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RESUMEN: En este trabajo revisamos brevemente las propiedades de 
las superficies que crecen de forma radial y su conexión con el creci-
miento biológico. Nos vamos a concentrar en modelos simplificados 
que resultan de la abstracción de sólo considerar el crecimiento del 
dominio y no la curvatura de la interfaz. Las ecuaciones lineales se pue-
den resolver exactamente y la fenomenología del crecimiento puede ser 
inferida de las soluciones explítas. Las ecuaciones no lineales dan lugar 
a interesantes problemas abiertos que vamos a resumir aquí. 
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Estocásticas. 

ABSTRACT: We briefly review the properties of radially growing 
interfaces and their connection to biological growth. We focus 
on simplified models which result from the abstraction of only 
considering domain growth and not the interface curvature. Li-
near equations can be exactly solved and the phenomenology 
of growth can be inferred from the explicit solutions. Nonlinear 
equations pose interesting open questions that are summarized 
herein. 

KEY WORDS: Morphogenesis, Probability Theory, Nonequilibrium 
Statistical Mechanics, Stochastic Partial Differential Equations.

I. IntroductIon

Since the origins of the interdisciplinary exchange among 
mathematics and biology, the development of the form and 
structure of living organisms has always been considered a 
fascinating topic [1] [2]. Already present in these seminal 
works, the necessity of considering physical and mathemat-
ical laws, together with the relevant biological principles, 
has been increasingly recognized in the scientific literature 
along the years. The first of these works [1], the book On 
Growth and Form by Sir D’Arcy Wentworth Thompson, is 
sometimes regarded as the first biomathematics treatise 
that has ever been written. Among the large number of 
contributions that can be found in its pages, the chapter 
relating to the comparison of related forms is particularly 
representative. In it Thompson describes how differences in 
the forms of related animals can be formalized by means of 
simple mathematical transformations. A canonical exam-
ple is that of the crocodile skulls; in Figure 1 one can see 
the classical diagrams by Thompson in which he related 
the form of the skulls of different species of crocodiles by 

Figure 1. Crocodile structure transformations by D'Arcy W. Thompson. 
This figure shows how simple mathematical transformations can 
connect the form of the skulls of different species of crocodiles.

means of simple geometric transformations. In his search 
for a mathematical description of biological forms he also 
found the remarkable connection among phyllotaxis and 
the Fibonacci sequence.
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The second seminal work on biomathematics we have men-
tioned is the article The Chemical Basis of Morphogenesis 
by Alan Turing [2]. In it Turing explores biological pattern 
formation by means of systems of reaction-diffusion equa-
tions. His goal was understanding how a homogeneous 
state may lose its stability and give rise to a spatial struc-
ture. This is actually what takes place in morphogenetic 
processes, by means of which a relatively homogeneous 
distribution of cells starts to develop the shape of a par-
ticular organism. To this end he devised a very clever 
mechanism able to make the homogeneous state lose its 
stability purely due to the effect of the diffusion of two 
or more reagents. This Turing instability along with model-
ling in terms of reaction-diffusion processes are nowadays 
considered as one of the most important mathematical 
tools in the field of theoretical morphogenesis [3].

count of fingerprints or the patterns of retinal venation, 
their differences are greater even in the case of monozy-
gotic twins. Differences that are expected to grow as our 
reference spatial scale decreases, and that are particularly 
evident in the architecture of cell colonies. These and 
other observations unveil that morphogenetic processes 
are not completely determined by the genetic expression. 
Of course, it is widely recognized nowadays that environ-
mental factors play a determinant role in morphogenesis. 
Both aside and as a consequence of this one would be 
interested in determining how random factors affect the 
process of growth, and so how is this process constraint 
by the laws of probability.

Figure 2. Alan Turing memorial statue in Sackville Park, 
Manchester, UK (Wikimedia Commons).

Another important example in this context, and object 
of the present work, is the examination of the properties 
relating to the architecture of cell colonies, as originally 
researched by Murray Eden [4, 5]. The overall appearance 
of a living organism is conditioned by its genetic expres-
sion. Indeed, it escapes to nobody that twins are similar to 
each other as whole individuals. However, when we regard 
smaller scale properties of them, like the dermal ridge 

Figure 3. Plant callus: undifferentiated tissue developed on an 
injured leaf of wild cabbage. Courtesy of the Complex Systems 
Laboratory, under the leadership of Prof. Javier Galeano at the 

Universidad Politécnica de Madrid.

The Eden model was introduced in order to shed some light 
into this question [4, 5]. It is a simplified model for biologi-
cal growth, which results from the abstraction of neglect-
ing many of the real aspects of cell colonies development. 
It concentrates just in the appearance of new cells in the 
colony periphery; once introduced, cells are never removed 
from it. This model is to be considered in ( )Z {0,1}d , where d ∈N 
denotes the spatial dimension, and 0 and 1 stand for an 
empty and an occupied site respectively. Starting from a 
single cell at the origin, and following a set of probabilistic 
rules which dictates the frequency and manner in which 
new cells are introduced in the colony [4, 5], a radial form 
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develops in the long time. Its macroscopic shape is af-
fected by the underlying lattice structure, and its interface 
shows fractal properties that are independent of it [6, 7]. 
On the applied side, the Eden model and its variants can 
be used to model some biological processes such as the 
growth of calli in plants, see Figure 3. On the theoreti-
cal side, the Eden model is a type of percolation process, 
which is known as first passage percolation. Percolation 
theory is a fascinating branch of probability theory which 
deals with the properties of connected clusters in random 
graphs, see Figure 4, and it is known to pose some of 
the most changeling questions within this subset of pure 
mathematics [8].

system obeys the Family-Vicsek scaling [10], i. e., the two-
points correlation function is of the form

( , ) ( ', ) | ' | | ' | ,h x t h x t x x f
t

x x2

1/z
G H= - -a

b l (1)

for short times, where G·H is the average over a large 
number of realizations, f (·) is the scaling function, and a 
and z are universal quantities known as critical exponents: 
a is known as the roughness exponent and z as the dy-
namical exponent, which measures the velocity at which 
the correlations travel. The function h (x, t) expresses the 
height of the interface with respect to the initial condition 
at some given position x and time t. The ratio of the critical 
exponents b = a/z constitutes a new exponent measuring 
the velocity at which the interface width increases during 
the first stages of growth [6, 7]. For the dimensionality 
considered the simulations have measured a  1/2 and 
z  3/2, which place this discrete model in the same uni-
versality class as the continuum equation

 
2

( ) ( , ),h h h F x t2 2
t2 o m pd d= + + +  (2)

which is known as the Kardar-Parisi-Zhang (KPZ) equa-
tion [11]. In this case ( , )x tp  is a Gaussian distributed spa-
tiotemporal noise delta correlated in both space and time, 
and n, l and F are real positive parameters. Of course, the 
cylindrical Eden model differs from its radial counterpart 
in two features: the interface is curved and grows later-
ally. Herein we will consider an abstraction of this problem 
and focus exclusively on lateral growth. As discrete models 
are usually placed in the universality classes defined by 
continuum equations, we will study the dynamics of such 
equations defined on uniformly growing domains.

II. lInear growth

In this section we will summarize some of the recent re-
sults obtained with linear equations. As they are exactly 
solvable their dynamical structure can be inferred from 
explicit expressions.

Our study of the dynamics of stochastic growth equations 
on growing domains begins with a stochastically forced 

Figure 4. Detail of a bond percolation on the square lattice in two 
dimensions (Wikimedia Commons).

Although a rigorous connection have never been estab-
lished, it is widely accepted that the fluctuations of the 
Eden interface can be described with some suitable sto-
chastic partial differential equation [6, 7, 9]. Such a rela-
tion has been proposed in light of numerical results derived 
with the so called cylindrical Eden model [9]. In this case, 
for d = 2, the system is a strip of infinite length and finite 
width L, and the initial condition is a whole semistrip. 
For large enough L and periodic boundary conditions the 
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(0, L0). This transformation counterbalances advection, and 
so the resulting equation reads

 
( ) ( )

( , ),
t
h

L t
L D

x
h

g
g

h F
L t
L x t0

2

2

2
0

2
2

2
2 p= - + +

o
c m  (9)

where we have used the fact that the noise is delta cor-
related. The dilution term has become ( / )vh g g h$d =- o . 
Dilution has a transparent physical meaning: as the do-
main grows the incoming mass becomes distributed in 
a larger (d-dimensional) area. Now we assume that the 
growth function adopts the power law form g(t) = (t/t0)g, 
where the growth index g ≥ 0, to find

 ( , ) .
t
h

t
t D

x
h

t
h F

t
t x t0

2

2

2
0

/2

2
2

2
2 c

p= - + +
c c

b bl l  (10)

The growth index g is a new degree of freedom of this 
problem; it cannot be deduced from the other model pa-
rameters, and has to be measured directly from the physi-
cal system under study.

Now we move to a more general situation in which we 
consider an arbitrary diffusion operator of order z and 
an arbitrary spatial dimension d, see Eq. 7. From now on 
the d-dimensional coordinates will be denoted x  x and 
y  y for simplicity. In this case, we can proceed exactly 
in the same way as in the one-dimensional situation to 
find, instead of equation (10), the equation

 | | ( , ),h D
t
t h

t
d

h F
t
t x t0 0

/2

t

d

2
c

pd=- - + +
gc

g
c

b bl l  (11)

where the fractional operator |∇|z is to be understood in 
terms of the Fourier transform. Special values of z yield some 
of the well known equations in this topic, as the EW equa-
tion for z = 2 [12] and the Mullins-Herring equation for 
z = 4 [14,15]. There is still another way of deriving an equa-
tion similar to equation [11] but in which the dilution term is 
not present. If we just considered the dilatation transforma-
tion x  (t / t0)g x instead of domain growth we would find

 | | ( , ) .h D
t
t h F

t
t x t0 0

/2

t

d

2 pd=- + +
gc

g
c

b bl l  (12)

The difference among equations 11 and 12 appears already 
in the amount of mass arriving at the interface [16]. In 

diffusion equation, known as the Edwards-Wilkinson (EW) 
equation [12] in this context, which reads

 ( , ),yh D h F tt
22 pd= + +  (3)

where ( , )y tp  is a zero-mean Gaussian white noise which 
correlation is

 ( , ) ( ', ') ( ') ( '),y y y yt t t tG Hp p fd d= - -  (4)

D is the diffusion constant, F the constant rate at which 
mass enters the interface and ε the noise intensity, all 
these parameters being positive real numbers. We start 
considering the conservation law in integral form

 ( , ) ( , ) ,y y j y y
dt
d h t d t dF

S St t

$d= - +6 @# #  (5)

where St is the uniformly growing domain, j D hd=-  is the 
current generated by diffusion, and ( , ) ( , )y yt F tF p= +  
is the EW growth mechanism [13]. By applying the Rey-
nolds transport theorem we find

 ( , ) ( ) ,y y v y
dt
d h t d h h d

S

t

St t

$2 d= +5 ?# #  (6)

where v (y, t) denotes the flow velocity generated by the 
growing domain. Valid as it is for any domain, the integral 
conservation law may be expressed in the local form

 ( ) ( , ) .v yh h D h tF2
t $2 d d+ = +  (7)

In this equation we readily identify two new terms, the ad-
vection one v h$ d , and the dilution vh $d . For every y  St, 
that has evolved from y0  St0, we find ( , ) /v y yt t2 2= . Let 
us now concentrate in one-dimensional domains and then 
move to higher dimensions. In this case uniform growth 
translates into y = g (t) y0, where g (t) is a temporal function 
such that g (t0) = 1. This yields /v yg g= o , and thus

 ( , ) .h
g
g

y h h D h F y t2
t y y2 2 2 p+ + = + +

o
] g  (8)

For a one-dimensional domain (0, L (t)), with L (t) = g (t) L0, 
we change the spatial coordinate x = yL0 / L(t), where 
L0 = L(t0), in order to map the problem into the interval 
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In absence of dilution we find

 2
1

2

2
1

2

1/ ,

1/ ,

d d

d

if

if

<

>
m

g
c

g

c g

c g
=

+ -

-

Z

[

\

]]

]
 (19)

or alternatively

 ,
z
d
eff

m b= +  (20)

where b = 1/2 – d/(2z) and

 
/(1 ) 1/ ,

1/ .
z

if

if

<

>
eff

3

g cg c g

c g
=

-
(  (21)

From these formulas one can clearly read that when dilu-
tion is suppressed there is no mechanism for correlations 
propagation. Otherwise dilution is the responsible for the 
propagation of correlations in the fast growth regime, i. 
e. when g > 1/z.

Complementary information can be obtained from the in-
terface persistence. The persistence of a stochastic process 
denotes its tendency to continue in its current state. When 
considering the dynamics of a fluctuating interface, one 
refers to the persistence probability P+ (t1, t2) (P– (t1, t2)) as 
the pointwise probability that the interface remains above 
(below) its profile at t1 up to time t2 > t1 [18, 19]. Herein, 
as in [17], we concentrate on the case in which the initial 
profile is flat, and we suppress the contribution coming 
from the zeroth mode again. For the stochastic differen-
tial equations under consideration the symmetry hn  –hn 
for all Fourier modes n ≠ 0 holds, implying the equality 
P+ = P–  P. For long times t2  t1 we have the power law 
behavior [18, 19]

 ( , ) ( / ) ,P t t t t1 2 1 2+ i
 (22)

defining the persistence exponent q. It was previously 
calculated in the limit z  ∞ when g = 0 [19].

 
2
1

2
2 2 1 ,d.i

g
+ -  (23)

up to higher order terms, and in this same limit when 
d = 1 and g = 1 [17]

absence of external sources of mass, i. e. F = ε = 0, and 
for no flux boundary conditions the total mass on the 
surface is conserved

 ( , ) ( , ) ,h y t dy h x t dx
0

( )

0

( )

0 0

0

L t L t L L0 0

g g=# # # #  (13)

for the dilution dynamics (equation 11). In the no dilution 
situation corresponding to equation 12 we find

 ( , ) ( , ) .h y t dy
t
t h x t dx

0

( )

0

( )

0 0 0

0

L t L t d L L0 0

g g=
c

b l# # # #  (14)

This second case, as we have already mentioned, is pure 
dilatation, which implies that not only the space grows, 
but also the interfacial matter grows at the same rate, in 
such a way that the average density remains constant. 
Note that this process of matter dilatation, as well as the 
spatial growth, are deterministic processes.

We have analyzed both types of dynamics, in the absence 
and presence of dilution, and found a number of measur-
able consequences. Temporal dynamics can be studied by 
means of the temporal auto-correlation

( , ')
( , ) ( , ')

( , ) ( , ')

{ , '}
{ , '}

,

{ , '} { , '},

max
min

max min

A t t
h x t h x t

h x t h x t
t t
t t

for t t t t

2
0
1/2 2

0
1/2

0/ +

&

G H G H
G H m

c m

 

where l is the auto-correlation exponent and G·H0 denotes 
the average with the zeroth mode contribution suppressed. 
When dilution is considered the auto-correlation exponent 
takes the form

 
/ 1/ ,

1/ ,

d

d

if

if

<

>
m

b g

b c

c g

c g
=

+

+
(  (16)

or alternatively

 ,
z
dm b= +
m

 (17) 

where b = 1/2 – d/(2z ) and

 zl = min {z,1/g}. (18)

(15)
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this limit dilution has a measurable action, and when it is 
included in the interface equation of motion the resulting 
correlation is [13]

 ( , ) ( ', ) ( , ) ( '),h y t h y t h y t t y y2 +G H G H d- -  (29)

which is simply the short time limit of equation 28. If 
dilution is suppressed we find however [21,22]

 ( , ) ( ', )

( ')

( ) ( ')

( ')

1/ ,

1/ ,

1/ .

lnh y t h y t

t y y

t t y y

t y y

if d

if d

if d

<

>

0

d

+G H
d

d

d

c

c

c

-

-

-

=
c

*  (30)

In this case we see that for fast enough growth memory 
effects appear and modify the time dependent prefac-
tor [21, 22]. The increase of this prefactor reflects the 
mass excess that enters the interface when dilution is not 
operating as shown in equation 14. We note that these 
correlations are modified when one considers actual radial 
growth due to topological considerations, a fact that has 
unambiguous effects on the interface scaling [23]. A con-
sequence of all these correlations is the scale dependent 
fractal dimension

 
(| ' | , )

1 (3 )/2

1

| ' | ,

| ' | ,

d x x t

d

d

if x x t

if x x t

(1 )/

(1 )/

f

%

&

g

- =

+ -

+

-

-

gc g

gc g

-

-
)

 (31)

which is independent of whether we contemplate dilution 
or not. These asymptotic values suggest the self-similar 
form of the fractal dimension

 | ' | ,d d
t
x x

(1 )/f f= -
gc g-b l  (32)

which would imply its invariance with respect to the 
dilatation x  bx, t bZf t, and df  baf df, for zf = z/
(1 – zg), af = 0 and b a real number strictly greater 
than one.

As a final note let us mention that the assumption z > d 
is fundamental in order to get the correlations specified by 
equation (28). As we have seen, in this case the dynami-
cal exponent is universal and given by z = z. For g = 0 
and z = d = 1 the dynamical exponent is still universal 
and given by z = 1; however for g = z = d = 1 and in the 

 
2
1

2
1 ,.i
g

-  (24)

up to higher order terms and in the absence of dilution. 
We have calculated the persistence exponent [13], again 
in the limit z  ∞ and assuming the inequality g > 1/z, 
in the presence of dilution

 
2
1

2
,d d.i c
g

+ -  (25)

up to higher order terms, and in the absence of it

 
2
1

2
,d.i
g

-  (26)

generalizing the previous result [17]. The exponent 
q = 1/2 characterizes neutrally persistent interfaces, which 
are those deprived of a relaxation mechanism (i. e. D = 0 
in equation 12). For q < 1/2 the interface is persistent and 
for q > 1/2 it is antipersistent. Note that if dilution acts 
on the interface then it is antipersistent, as in the case of 
no domain growth; contrarily, if dilution is not present, the 
interface becomes persistent.

Before we start calculating spatial correlations let us note 
that domain growth induces the length scale |x–x’|  t(1-zg)/z. 
First we show the scaling form that the two points cor-
relation function adopts for “microscopic” spatial scales 
|x-x’|  t(1-zg)/z in the fast growth regime. In this case one 
has [16]

 ( , ) ( ', ) ( , )

| ' | | ' | ,

h x t h x t h x t

x x t x x tF

2

( ) ( 1)/d d

.

.

G H G H-

- -
g c g gc g- - -

5 ?

 (27)

or in Lagrangian coordinates |y–y’| = |x-x’| tg

 
( , ) ( ', ) ( , )

| ' |
| ' |

,

h y t h y t h y t

y y
t

y y
F

2

1/

d

.

.

G H G H-

-
-g

g

-
; E

 (28)

where we have assumed the inequality z > d and the sta-
tistical isotropy and homogeneity of the system in the limit 
in which the scaling form holds. As dilution does not act 
on such a microscopic scale, these results are independ-
ent of whether we contemplate dilution or not. Things are 
different for macroscopic length scales |x-x’|  t(1-zg)/z. In 
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As we have shown in the previous section, the dilution 
mechanism fixes the Family-Vicsek scaling in the fast 
growth regime. In the radial Eden model case, assuming 
it belongs to the KPZ universality class, we would have 
z = 3/2 in d = 1 and g = 1. And so, one would naïfly expect 
that the resulting interface is uncorrelated and we have to 
resort on dilution effects in order to fix the Family-Vicsek 
scaling and get rid of memory effects. But here comes the 
paradoxical situation. There are two main symmetries as-
sociated with the d-dimensional KPZ equation: the Hopf-
Cole transformation which maps it onto the noisy diffusion 
equation [24] and Galilean invariance which have been 
traditionally related to the non-renormalization of the KPZ 
vertex at an arbitrary order in the perturbation expan-
sion [25]. In the case of the no-dilution KPZ equation 34 
both symmetries are still present. Indeed, this equation 
transforms under the Hopf-Cole transformation u = exp [l 
h/(2n)] to

 
2 2

( , ) ,u
t
t u

F
t u

t
t x t u0

2
2 1 0

/2

t

d

2 o
o
c m

o
m pd= + +

c
c

c
-

b bl l  (35)

which is again a noisy diffusion equation and it can be 
explicitly solved in the deterministic limit ε = 0. We find 
in this case

 
( , )

[4 ( )]

(1 2 ) [ /(2 )]

4 ( )

| | (1 2 )
( , ) ,

exp

exp

u x t
t t t

F t

t t t

x y
u y t dy

0
2 1 2

0
1 2 /2

/2

0
2 1 2

0
1 2

2

0

d

d

dR

r

c m o

c

=
-

-

-
-

- -

c c c

c

c c c

- -

- -
< F#

 (36)

which corresponds to

absence of dilution this exponent becomes non-universal 
and given by z = F /(D + F) ∈ (0,1) [20]. The presence of 
dilution restores universality and the non-growing domain 
result z = 1 [16].

III. nonlInear growth

The open questions in this topic are related, not surpris-
ingly, to the appearance of nonlinear terms in the cor-
responding equations of motion. One of the most popu-
lar nonlinear models in this context is the KPZ equation, 
which as we have commented in the Introduction is related 
to the biologically motivated Eden model. As we will see, 
understanding the KPZ equation on a growing domain may 
shed some light on some of the properties of the classical 
version of this model.

The KPZ equation on a growing domain reads [16]

 2
( )

( , ) .

h
t
t h

t
t h

t
d

h Ft
t
t x t

0
2

2 0
2

2

1 0
/2

t

d

2 o m

c
c p

d d= + -

- + +

c c

c
c

-

b b

b

l l

l

 (33)

Of course, if we just considered the dilatation x(t/t0)g x 
we would find

 2
( )

( , ) .

h
t
t h

t
t h

Ft
t
t x t

0
2

2 0
2

2

1 0
/2

t

d

2 o m

c p

d d= + +

+ +

c c

c
c

-

b b

b

l l

l

 (34)

 ( , ) 2
[4 ( )]

(1 2 ) [ /(2 )]

4 ( )

| | (1 2 )
2

( , ) ,ln
exp

exph x t
t t t

F t

t t t
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for given initial conditions u (x, t0) and h (x, t0). It is clear 
by regarding this formula that decorrelation at the deter-
ministic level will happen for g > 1/2. It is still necessary 
to find out if at the stochastic level this threshold will be 
moved to g > 2/3. If we consider the dilution KPZ equa-
tion 33 then transforming Hopf-Cole we would find the 
nonlinear equation
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which may be thought of as a time dependent and spa-
tially distributed version of the Gompertz differential 
equation [26]. In this case it is not evident how to find an 
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Iv. dIsorder

It is quite natural to consider propagation into disordered 
media in the context of biological growth. One could, for 
instance, imagine the development of a bacterial infection 
inside a host body. This is, of course, the propagation of 
a bacterial front inside a medium with a extremely low 
degree of symmetry.

Apart from the classical KPZ equation which is driven by 
thermal noise, a different version in which this noise is 
replaced by quenched disorder has been considered in the 
literature [6, 7]

 
2

( ) ( , ),h h h F x h2 2
t2 o m pd d= + + +  (41)

 ( , ) 0,x hG Hp =  (42)

 ( , ) ( , ) ( ') ( '),x h x h x x h hG Hp p fd d= - -l l  (43)

which is nonlinear even when l = 0. All the problems 
considered in this section are open in this simpler case as 
well. A way of understanding this equation is considering 
the simplified random deposition version of it

 ( , ),h F x ht2 p= +  (44)

which is actually an ordinary differential equation in which 
the position x acts just as a parameter, at least if the 
quenched disorder is conveniently regularized. And thus, 
let us consider the auxiliary problem

 ( ),
dt
dh F hh= +  (45)

 ( ) 0,hG Hh =  (46)

 ( ) ( ) ( '),h h h hG Hh h fd= -l  (47)

 It is similar to the stochastic problem

 ( ),
dt
dh F th= +  (48)

 ( ) 0,tG Hh =  (49)

 ( ) ( ) ( '),t t t tG Hh h fd= -l  (50)

explicit solution at the deterministic level and what would 
be its decorrelation threshold.

Galilean invariance means that the transformation

 , , ,x x vt h h vx F F v
2

2
" " "m m- + -  (39)

where v is an arbitrary constant vector field, leaves the KPZ 
equation invariant. In case of no dilution this transforma-
tion can be replaced by
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which leaves invariant equation 34. If we consider dilution, 
then it is not clear how to extend this transformation to 
leave equation 33 invariant. The main difficulty comes 
from the dilution term which yields a non-homogeneous 
contribution to the dynamics as a response to the trans-
formation h h + vx. So in summary we may talk of a 
certain sort of Galilean invariance which is obeyed by the 
no-dilution KPZ dynamics (equation 34) and is lost when 
dilution is taken into account. If it were found that the 
dilution equation 33 obeys the traditional KPZ scaling (at 
least in some suitable limit), then that would put into 
question the role that Galilean invariance has in fixing the 
exponents. The KPZ critical exponents are believed to obey 
the scaling relation a + z = 2 in all spatial dimensions, a 
relation that has been traditionally attributed to Galilean 
invariance, although this interpretation has been recently 
put into question [27-31].

There is still another fundamental symmetry of the KPZ 
equation, but this time it just manifests itself in one spa-
tial dimension: the so called fluctuation-dissipation theo-
rem [6, 7]. It basically says that for long times, when satu-
ration has already being achieved, the nonlinearity ceases 
to be operative and the resulting interface profile would 
be statistically indistinguishable from that created by the 
EW equation. For fast domain growth, we know from the 
linear theory that the interface never becomes correlated, 
and it operates, in this sense, as if it were effectively in 
the short time regime for all times [13]. As a consequence, 
the fluctuation-dissipation theorem is not expected to play 
any role in this case. Of course, this result would be inde-
pendent of whether we contemplated dilution or not.
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Even when g = 1 there is an interesting question associ-
ated with dilution. We know that dilution keeps constant 
the amount of matter on the interface, while suppressing 
it we get a mass excess. For linearly in time growing in-
terfaces we know that the value of F, which describes the 
amount of matter arriving at the interface, controls the 
possibility of interface pinning/unpinning. If no dilution is 
present, the mass excess could act as effectively increasing 
the value of F, and thus facilitating interface unpinning. 
It would be interesting to quantitatively determine how 
much the threshold of pinning is moved in the absence of 
dilution, if this is indeed the case.

v. suMMary and conclusIons

As we have seen, a consequence of the linear theory is that 
dilution erases the memory effects and this way restores 
the classical Family-Vicsek scaling [21, 22]. Otherwise, for 
fast domain growth, a series of unexpected consequences 
arise, as the modification of the random deposition cor-
relation, the lost of the antipersistent character of the 
fluctuating interface and even the appearance of non-
universal critical exponents. In this respect, dilution can 
be thought of as the mechanism which maintains some of 
the most characteristic features of surface growth when 
we let the domain size grow in time.

On the other hand, some of the well known symmetries of 
the KPZ equation, as Galilean invariance and mapping to the 
directed polymer problem, are maintained in a dilating setting 
but lost by virtue of dilution. So, in principle, one would ex-
pect that in the absence of dilution memory effects could be 
present in the KPZ dynamics, and this way some its character-
istic features would be lost. However, it is somehow paradoxi-
cal that it is exactly this absence of dilution what maintains 
the classical symmetries of this equation. Furthermore, these 
symmetries have been sometimes considered as necessary 
ingredients in the resulting KPZ scaling. If we found that the 
KPZ equation in a rapidly growing domain and in presence of 
dilution behaved in a similar way to its classical counterpart, 
that would suggest that the symmetries present in the stand-
ard situation are not playing such a necessary role.

As we have already mentioned, the motivation for study-
ing radial growth models such as the Eden or different 

which solution is

 ( ) ( ) ( ) ( ),h t h t F t t W t t0 0 0f= + - + -  (51)

where t0 is the initial time and W(t) is a Wiener process, so 
we basically have two superposed motions: constant drift 
and Brownian motion. Classical Brownian motion describes 
a particle choosing its direction of motion randomly every 
time step. If the noise is position dependent, i. e. h = h(h), 
then the direction of motion is already prescribed in every 
spatial point. For a discrete version of this process, say an 
unbiased random walk on Z for which the jump direction 
is specified in every site, if the system revisits any loca-
tion, then it is trapped forever (jumping forth and back in 
the last two visited sites). The only way to prevent (this of 
other sort of) trapping is to consider a sufficiently large F, 
so the system is evolving over new positions all of the time. 
Something similar happens in equation 41: for values of F 
smaller than a critical one Fc the interface becomes pinned, 
while for larger values the interface propagates [6].

It would be interesting to analyze the interplay of spatial 
disorder with a growing domain size. We again have two 
possibilities, the equation with dilution
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and the one without it
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Note that, contrary to the classical case in which the inter-
face propagates linearly in time, in this case the velocity of 
propagation would be  tg. It would be interesting to clarify 
whether g = 1 plays a critical role in the dynamics or not. In 
other words, whether the interface is always pinned for g < 1 
and always moving for g > 1, or if there is a dependence 
on the parameters values in these cases too. If the second 
situation held, it would be yet necessary to clarify whether 
there are other possible critical values for g. According to the 
microscopic description commented in this section, it seems 
plausible that g = 1 is indeed the critical value of the growth 
index separating pinned and unpinned regimes.
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that we found for both the dilution and no-dilution lin-
ear dynamics in [13]. This way one could in principle 
experimentally determine both exponents a and b and 
as a consequence the ratio z =a/b in the fast growth 
regime. Subtracting the inverse of the so obtained value 
for the dynamic exponent z from the measured value of 
the growth index g, which should be easily obtainable 
from experiments, one could estimate the distance from 
correlation, and in turn the possible necessary strength of 
a control protocol.

ones partially comes from the possible similarity of these 
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study can be translated into this context to obtain some 
simple conclusions, provided the modelling assumptions 
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