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RESUMEN: Alan Turing es conocido sobre todo por sus 
contribuciones a las ciencias de la computación y a la 
criptografía, pero el impacto de su trabajo en la teoría general 
de las funciones computables (teoría de la recursión) y en los 
fundamentos de la matemática es de igual importancia. En este 
artículo damos una breve introducción a algunas de las ideas y 
problemas matemáticos surgidos de la obra de Turing en estas 
áreas, como el análisis de la estructura de los grados de Turing 
y el desarrollo de las lógicas ordinales.

PALABRAS CLAvE: Alan Turing; Fundamentos de la matemática.

ABSTRACT: While Alan Turing is best known for his work on 
computer science and cryptography, his impact on the general 
theory of computable functions (recursion theory) and the 
foundations of mathematics is of equal importance. In this 
article we give a brief introduction to some of the ideas and 
problems arising from Turing’s work in these areas, such as the 
analysis of the structure of Turing degrees and the development 
of ordinal logics.
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1. PREAMBLE: THE FOUNDATIONS OF MATHEMATICS 
IN THE 1930'S

David Hilbert (1862-1943), one of the most 
prominent mathematicians of his time, developed 
in the 1920's an ambitious programme for laying the 
foundations of mathematics1. New firm foundations 
were much needed in the wake of the discovery of 
several paradoxes involving some of the most basic 
mathematical notions, such as those of infinite sets, 
or definability. At the beginning of his famous address 
on The Foundations of Mathematics, delivered at the 
Hamburg Mathematical Seminar in July 1927, he said 
(Hilbert, 1928):

I pursue a significant goal, for I should like to eliminate 
once and for all the questions regarding the foundations 
of mathematics [...] by turning every mathematical 
proposition into a formula that can be concretely 
exhibited and strictly derived. (Hilbert, 1927)

The need for formalization and strict derivation of 
mathematical statements according to explicitly stat-
ed logical rules was the only way, according to Hilbert, 
to be able to reason about ideal elements, such as ac-
tual infinite sets, while avoiding the paradoxes. To at-
tain this goal, Hilbert proposed a foundation for math-
ematics that he called proof theory, whose goal was to 
build a formal system consisting of

• A formal language, in which every mathemati-
cal statement can be expressed by a formula.

• An effectively given list T of formulas, called axi-
oms. These include logical axioms, axioms of equality, 
and mathematical axioms (including axioms of number, 
i.e., arithmetical axioms, as well as explicit definitions, 
and finite and transfinite recursion axioms).

• A finite set of rules of inference for deriving new 
formulas φ from T, written T ⟝ φ, and read “T proves 
φ”. In Hilbert's system [Hilbert, 1928] the only rule of 
inference is the Modus Ponens).

The formal system is not arbitrary, for it is intend-
ed to model mathematics in the following sense 
(Hilbert, 1928):

The axioms and provable propositions, that is the formulas 
that result from this procedure, are images (Abbildung) 
of the thoughts constituting customary mathematics as it 
has developed until now. (Hilbert, 1928)

In a famous passage from his 1925 address On the 
Infinite, Hilbert expressed the conviction of the solv-
ability of all mathematical problems2 (Hilbert, 1925):

... every mathematical problem can be solved. We 
are all convinced of that. After all, one of the things 
that attract us most when we apply ourselves to 
a mathematical problem is precisely that within us 
we always hear the call: here is the problem, search 
for the solution; you can find it by pure thoughts, 
for in mathematics there is no ignorabimus. 
(Hilbert, 1925)

Thus, it appears that Hilbert was convinced that his 
proposed system for the foundation of mathematics, 
or perhaps some extension of it, could be

Complete: Given a formula φ, either T ⟝ φ or 
T ⟝ ¬φ.

Further, as an essential requirement for the le-
gitimacy of any formal system strong enough for the 
foundation of mathematics (hence involving ideal ele-
ments), Hilbert wanted a proof of consistency, a proof 
that should be obtained by purely finitary means (i.e., 
not involving ideal elements), for he believed that 
only finitary statements are firmly grounded. Thus, 
the system should be provably

Consistent: For no formula φ we have
T ⟝ φ and T ⟝ ¬φ.

And the proof should be finitistic (hence arithmetical).
As Hilbert (1925) acknowledged,

... my proof theory cannot specify a general method 
for solving every mathematical problem; that does 
not exist. (Hilbert, 1925)

He, however, does not give any argument of why 
this is so. Yet he seemed to believe that, in addition 
to being complete and consistent, some formal sys-
tem based on first-order logic and strong enough to 
encompass all ordinary mathematics could be

Decidable: There is a definite method, or 
mechanical process, by which, given any formula 
φ, it can be determined whether or not φ is 
provable in the system.

The existence of such an effective method 
(for any given formal system) is known as the 
Entscheidungsproblem (the Decision Problem). The 
Problem had already been posed for different formal 
systems by Schröder (1895) and Löwenheim (1915). 
The formulation above was stated in the context of 
first-order logic by Hilbert and Ackermann in 1928. 
Let us observe that completeness implies a positive 
solution to the Entscheidungsproblem (assuming the 
axioms are given effectively).
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1.1. Incompleteness

In the autumn of 1930, in his retirement address 
to the Society of German Scientists and Physicians, in 
Königsberg, and in response to the Latin maxim: Igno-
ramus et ignorabimus (We do not know, and will not 
know), Hilbert famously asserted:

Wir müssen wissen. Wir werden wissen. (We must 
know. We will know.)

Thus, Hilbert was still holding onto the belief that 
every mathematical problem could be solved, pre-
sumably by deriving it from a complete formal system. 
Ironically, just the day before, during the Conference 
on Epistemology held jointly with the Society meet-
ings, Kurt Gödel had informally announced his incom-
pleteness result, which represented a fatal blow to 
Hilbert’s program, at least in the form outlined above. 
Gödel’s First Incompleteness Theorem asserts that

Theorem 1. Every consistent formal system that con-
tains a small amount of arithmetic is incomplete, i.e., 
there are formulas φ such that neither T ⟝ φ nor  
T ⟝ ¬φ.

The amount of arithmetic needed is indeed a very 
small fragment of Peano’s Arithmetic. For instance, 
Robinson’s finitely-axiomatizable theory Q suffices.

The second incompleteness theorem is even more 
dramatic.

Theorem 2. No consistent formal system that contains 
a moderate amount of arithmetic can prove its own 
consistency. I.e., the arithmetical statement

CON(T)

that expresses the consistency of the system is not 
provable in the system itself. Formally,

In this case, the finitely-axiomatizable fragment of 
Peano’s Arithmetic known as Σ1-Induction suffices. 
Thus, no reasonable formal system for mathematics 
(not even for a basic fragment of arithmetic) can be 
both consistent and complete.

But how about the Entscheidungsproblem? To an-
swer this, one needs to make precise the notion of me-
chanical process, which leads naturally to the notion 
of computable function on the natural numbers: Given 
a formal system, one needs a computable function f 
such that for any given formula φ, f(φ) = 1 if φ is prova-
ble in the system, and f(φ) = 0, otherwise. Since formu-

las in the relevant formal systems are finite sequences 
of symbols in a countable alphabet, by coding them by 
natural numbers, we may assume that f : ℕ → {0, 1}. 
The question is thus to define precisely the notion of 
computable function  on the natural numbers.

1.2. Princeton

In the 1930’s, Princeton University was the centre 
of mathematical logic in the United States. The In-
stitute for Advanced Studies (IAS), created in 1930 
and housed in the same building as the Department 
of Mathematics, the old Fine Hall, attracted first-rate 
mathematicians such as Oswald Veblen and John von 
Neumann, as well as Albert Einstein. Kurt Gödel vis-
ited the IAS on several occasions, giving a series of lec-
tures in 1934 on his incompleteness results, and be-
coming a permanent member in 1940. In Princeton, 
Alonzo Church (1903-1995) was the leading figure 
in Logic. Together with his bright students John Bar-
kley Rosser and Stephen Kleene, Church developed 
the λ-calculus, a formal system designed to formalize 
the intuitive notion of effectively calculable function. 
Church and Kleene introduced a class of effectively 
calculable functions, called λ-definable, and Church 
formulated the so-called

Church’s Thesis (First unpublished version, 1934): A 
function on the natural numbers is effectively calcula-
ble if and only if it is λ-definable.

In the meantime, Gödel had introduced his class of 
computable functions, known as the Gödel-Herbrand 
general recursive functions, and he had presented 
them during his 1934 visit to Princeton. Shortly after-
wards, Kleene showed that the class of λ-definable 
functions coincides with the class of Herbrand-Gödel 
recursive functions, and also with the class of Kleene’s 
recursive functions, now known simply as recursive. 
Thus, the first published version of Church’s Thesis reads:

Church’s Thesis (1936): A function on the natural num-
bers is effectively calculable if and only if it is recursive.

There is a notion of normal form for formulas of the 
λ-calculus, and in 1935, Church had proved the following:

Theorem 3 (Church, 1936a). There is no recursive 
function on the formulas of the λ-calculus such that 
on any formula C the value is 2 or 1 according as C has 
a normal form or not.

As a consequence, Church obtains the following:

Corollary 4 (Church, 1936b). The answer to the 
Entscheidungsproblem is negative, even for first-order logic.

http://dx.doi.org/10.3989/arbor.2013.763n5011
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That is, there is no effectively computable function 
on formulas C of first-order logic3 whose value is 1 or 0 
according as C is valid or not (equivalently, by Gödel’s 
Completeness Theorem, provable or not in the first-
order logic calculus).

But is this really a solution to the Entscheiduns-
problem? Church’s solution relies on Church’s Thesis, 
which identifies computable and recursive (as well as 
λ-definable) functions. Gödel was not convinced. The 
problem is why should every computable function be 
recursive?

2. ALAN TURING ENTERS THE SCENE

Alan Matthison Turing (1912-1954)4, aged 22, was 
elected Fellow at King’s College in Cambridge on the 
basis of a dissertation on the Gaussian Error Func-
tion, in which he proved the Central Limit Theorem 
(which he didn’t know had already been proved in 
1922 by J. W. Lindeberg). In the Spring of 1935 Turing 
took a course by Max Newman on the Foundations of 
Mathematics, including Gödel’s incompleteness theo-
rems and the Entscheidungsproblem. He immediately 
started working on the problem, producing in April of 
1936 a manuscript entitled On Computable Numbers, 
with an Application to the Entscheidungsproblem. The 
paper consists of:

• The analysis of an (idealized) human computer, 
in the process of computing a computable function on 
the natural numbers.

• The description of a machine analogue of the 
human computer: the automatic machines, or a-ma-
chines, now known as Turing Machines.

As is well-known, a Turing Machine (TM) is a device 
consisting of a tape (unbounded at both ends) divided 
into squares, a head that scans (reads), writes, and 
erases a symbol (0 or 1) on a given square of the tape, 
and a finite list of configurations. The TM performs 
two basic operations: (A) a possible change of symbol 
in the square being scanned, together with a possible 
change of configuration, and (B) a possible change of 
scanned square, together with a possible change of 
configuration. The operation being performed at any 
given time is determined by the current configuration 
and the observed symbol in the scanned square. A TM 
can thus be described completely by a finite table, de-
tailing the operations, and therefore the table, hence 
the TM, can be coded by a natural number.

When set in motion starting from a blank tape, a 
TM produces a sequence of binary numbers. If the 

sequence is infinite, the machine is called circle-free. 
Turing calls an infinite sequence of natural numbers 
computable if it can be computed by a circle-free TM.

• A proof of the existence of a Universal Turing 
Machine.

A Universal Turing Machine (UTM) is a TM that can 
be used to compute any computable sequence. That 
is, if the UTM U is set in motion with the code of a TM 
M written on the tape, then U will produce the same 
sequence as M. Turing’s UTM has been regarded as 
the first description of the stored-program computer.

• A proof of the non-computability of the Halting 
Problem.

The Halting Problem is the problem of determining 
whether an arbitrary TM is circle-free or not. Turing 
proves that there is no circle-free TM that will com-
pute the sequence of all codes of circle-free TM’s. 
Should such a TM exist, there would be a TM M com-
puting the sequence 1-fn(n), where fn is the sequence 
computed by the n-th circle-free TM. If m is the code 
of M, then fm(m) = 1 − fm(m), which is impossible.

Turing also proves that there is no TM that, given 
the code of a TM M, will determine whether the se-
quence computed by M contains a 0 or not. And the 
same for 1. In fact, he shows that the computability of 
the Halting Problem is equivalent to the existence of 
such TM’s.

• A “proof” that the computable functions (i.e., 
those computable by a Turing machine) are indeed 
those that “would naturally be regarded as computable”.

Of course, a real (i.e., mathematical) proof of this 
assertion is not possible, and so the arguments given 
by Turing are of three kinds:

(a) A direct appeal to intuition.

(b) A proof of the equivalence between 
computable (i.e., computable by a TM) and 
effectively calculable (or recursive).

(c) Giving examples of a large class of functions 
which are computable.

• A negative solution to the Entscheidungsproblem.

For each TM M, he writes a first-order formula 
Un(M) which says: the symbol 0 appears in the se-
quence computed by M. Then he proves that (1) if 
0 appears on the sequence computed by M, then 
Un(M) is provable, and that (2) if Un(M) is provable, 
then 0 appears in the sequence computed by M. 
In this way a negative solution to the Entscheidung-
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sproblem for first-order logic follows from the non-
computability of the Halting Problem.

It is hard to overestimate the importance of Turing’s 
paper, both for the foundations of mathematics and 
the theory of computation. With regards to founda-
tions, it is worth noticing Gödel’s enthusiastic reaction 
(see Gödel, 1964).

Due to A. M. Turing’s work, a precise and unquestion-
ably adequate definition of the general concept of 
formal system can now be given ... Turing’s work gives 
an analysis of the concept of ‘mechanical procedure’ 
(alias ‘algorithm’ or ‘computation procedure’ or ‘finite 
combinatorial procedure’). ... A formal system can 
simply be defined to be any mechanical procedure for 
producing formulas, called provable formulas.  
(Gödel, 1964)

Thus, while Turing (and Chuch, independently) had 
given a negative solution to the Hilbert-Ackermann 
version of the Entscheidungsproblem, hence yet a fur-
ther blow to Hilbert’s Program, he had given for the 
first time, according to Gödel, a precise definition of 
the concept of formal system, thus opening the door 
to a possible revision of the Program.

3. TURING’S DOCTORAL DISSERTATION

On the recommendation of Max Newman, Turing 
got accepted as a graduate student at Princeton. In a 
letter to Church, Newman writes:

I should mention that Turing’s work is entirely inde-
pendent; he has been working without any supervi-
sion or criticism from anyone. That makes it all the 
more important that he should come into contact as 
soon as possible with the leading workers on this line, 
so that he should not develop into a confirmed solitary.

Turing completed his doctoral dissertation in two 
years. His thesis, presented in 1938, was entitled Sys-
tems of logic based on ordinals. The motivation, clear-
ly stated on the first paragraph, was to avoid as far as 
possible the effects of Gödel’s incompleteness through 
the construction of sequences of formal systems of in-
creasing degree of completeness (Turing, 1939):

The well-known theorem of Gödel [...] shows that 
every system of logic is in a certain sense incomplete, 
but at the same time it indicates means whereby from 
a system L of logic a more complete system L’ may be 
obtained. By repeating the process we get a sequence 
L, L

1 = L’, L2 = L’1 , ... each more complete than the pre-

ceding. A logic Lω may then be constructed in which 
the provable theorems are the totality of theorems 
provable with the help of the logics L, L1, L2, ... [...] 
Proceeding in this way we can associate a system of 
logic with any constructive ordinal. It may be asked 
whether a sequence of logics of this kind is complete 
in the sense that to any problem A there corresponds 
an ordinal α such that A is solvable by means of the 
logic Lα. (Turing, 1939)

The following is an example of the formal systems 
(ordinal logics) studied in his thesis. Let T0 be the set of 
axioms of Peano’s Arithmetic (PA). Given Tk, let Tk+1:= 
Tk + CON(Tk). Then let Tω := Uk<ω Tk. One can continue 
into the transfinite by letting Tω+1 := Tω + CON(Tω), and 
so on. By Gödel’s Second Incompleteness Theorem, 
Tα+1 is strictly stronger than Tα , whenever Tα is effec-
tively given. But for Tα to be effectively given, the or-
dinal α must be computable. This leads to the notion 
of ordinal notations, i.e., a computable way to assign 
countable ordinals to natural numbers. Let us denote 
by |a| the ordinal assigned to the natural number a.

The Church-Kleene system O of ordinal notations: 
The number 1 is a notation for the ordinal 0, 2a is a 
notation for the successor of |a| and 3 . 5e is a nota-
tion for the supremum of the sequence |an|, when-
ever the sequence is strictly increasing and e is the 
code of a computable function ê such that ê(n) = an, 
for each n.

Observe that the set O of ordinal notations, with 
the order given by a <O b if and only if |a| < |b|, forms 
a tree that splits only at limit levels, and whenever a 
branch on the tree splits it does it infinitely.

The system T* := ‹Ta›aєo is an example of an Or-
dinal Logic. One might hope that every arithmetical 
statement φ could be decided by some Ta . That is, ei-
ther Ta ⟝ φ or Ta ⟝ ¬φ. Since the statement CON(T) 
is ∏1

0, that is, of the form ∀xR(x), where R is some 
computable relation5, a natural question is whether 
every ∏1

0 statement could be decided by some Ta. Tu-
ring proves the following completeness theorem for 
∏1

0 statements:

Theorem 5. For every true ∏1
0 sentence φ, there exists 

a Є O with |a| = ω + 1 such that Ta ⟝ φ.

The proof of the Theorem is quite ingenious (see Fe-
ferman, 2012), but as Turing himself recognized, it is 
disappointing because it is uninformative. Given a ∏1

0 
sentence φ, he does find an a such that, if φ is true, 
then a Є O with |a| = ω + 1 and Ta ⟝ φ. But this just 
shifts the question about the truth of φ to the ques-
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tion about the number a belonging to O, a question 
that is actually more complex than any arithmetical 
statement.

3.1. Oracles 

In section 3 of the Thesis, Turing goes on to consider 
what he calls number-theoretic statements (i.e., ∏2

0), 
namely, those of the form ∀x∃yR(x, y), where R is a 
computable relation. However, he does not succeed 
in proving a similar completeness theorem for ∏2

0 
statements; not surprisingly, for S. Feferman showed 
in 1962 that this is impossible (Feferman, 1962). Then 
in section 4, and in order to produce concrete exam-
ples of problems that are more complex than ∏2

0, Tur-
ing introduces the notion of computation relative to 
an oracle.

Let us suppose that we are supplied with some unspecified 
means of solving number-theoretic [i.e., ∏2

0] problems; a 
kind of oracle as it were. [...] With the help of the oracle we 
could form a new kind of machine (call them o-machines), 
having as one of its fundamental processes that of solving 
a given number-theoretic problem. (Turing, 1939)

Turing then defines precisely the notion of o-ma-
chine (for a fixed oracle o) and formulates the Halting 
Problem for o-machines, showing that it is not com-
putable by any o-machine, with an argument entirely 
analogous to the non-computability of the Halting 
Problem. Since every ∏2

0 statement is easily seen to 
be equivalent to one of the form “M is a circle-free 
TM”, if o is an oracle that decides every ∏2

0 formula, 
then it follows that the Halting Problem for o-ma-
chines is not ∏2

0.

Although the notion of o-machine is not pursued 
any further in Turing’s Thesis, with hindsight it is per-
haps the most important notion introduced in that 
work, for it is the starting point of the study of relative 
computability.

3.2. Relative computability 

The theory of computability relative to an oracle, 
was developed by Emil Post (1897-1984) and Kleene 
into the theory of degrees of unsolvability, also known 
as Turing Degrees.

A set of natural numbers A is Turing reducible to a 
set of natural numbers B if A is computable with ora-
cle B. Written A ≤T B.

Two sets of natural numbers A and B are Turing 
equivalent, written A≡T B, if and only if A ≤T B and 
B ≤T  A.

A Turing Degree is an ≡T-equivalence class. Let D 
denote the set of Turing Degrees with the order in-
duced by ≤T.

The analysis of the structure of D has produced 
many fascinating new ideas and techniques, such as 
the priority method, and is still one of the central ar-
eas of modern computability theory. Much is known 
about D. For example: each degree is countable; 
there are 2ℵ0-many degrees; each degree has only 
countably-many predecessors; D is not dense; for 
every degree a there is a degree b incomparable with 
a; there are 2ℵ0-many incomparable degrees; every 
two degrees have a least upper bound, but they need 
not have a greatest lower bound; etc.

The structure of D is indeed very complex. For one 
thing, every countable partial ordering can be embed-
ded in D. Moreover, the first-order theory of D and 
the set of theorems of second-order arithmetic are 
recursively isomorphic (S. Simpson, 1977). Perhaps 
the most outstanding still open problem about D is 
whether it is rigid, that is, whether D has a non-trivial 
automorphism.

3.3. On intuition and ingenuity

In section 11 of the Thesis, entitled “The purpose of 
ordinal logics”, Turing singles out two faculties of math-
ematical reasoning he calls intuition and ingenuity.

The activity of the intuition consists in making spon-
taneous judgements which are not the result of con-
scious trains of reasoning. (Turing, 1939)

Whereas

The exercise of ingenuity in mathematics consists in 
aiding the intuition through suitable arrangements 
of propositions, and perhaps geometrical figures or 
drawings. It is intended that when these are really 
well arranged validity of the intuitive steps which are 
required cannot seriously be doubted. (Turing, 1939)

By the introduction of formal logic, the need for in-
tuition is

... greatly reduced by setting down formal rules for 
carrying out inferences which are always intuitively 
valid. (Turing, 1939)

But since it is not possible to find a formal logic 
that would eliminate the use of intuition completely, 
because of Gödel’s incompleteness, one is naturally 
forced to consider “non-constructive” systems of 
logic, such as ordinal logics. With an ordinal logic we 
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are in a position to prove theorems by the intuitive 
steps of recognizing a number as a notation for an 
ordinal, and the mechanical (yet requiring ingenuity) 
steps of applying the logical rules.

Further study of ordinal logics, rechristened as 
transfinite recursive progressions of transfinite theo-
ries was carried out in the 1960’s by Feferman (1962).

ACKNOwLEDGMENTS

The work was partially supported by the Span-
ish Ministry of Science and Innovation under grant 
MTM2011-25229, and by the Generalitat de Catalun-
ya (Catalan Government) under grant 2009 SGR 187.

1 In the 1920’s, many other people collaborated either jointly 
with Hilbert or independently in the development of what is 
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organized by the Westphalian Mathematical Society to honor 
Weierstrass.

3 A language having only two unary predicate symbols, or just one 
binary relation symbol suffices.

4 We refer to A. Hodges’ excellent biography (Hodges, 1983) of A. 
Turing for all details about his life.

5 A unary relation, or predicate, i.e., a set of natural numbers, is 
computable if and only if its characteristic function is computable.
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