Arbor, Vol 191, No 772 (2015)

Refinamiento de estructuras macromoleculares cristalográficas


https://doi.org/10.3989/arbor.2015.772n2005

Pavel V. Afonine
Lawrence Berkeley National Laboratory, Estados Unidos

Alexandre Urzhumtsev
Centre for Integrative Biology, IGBMC, CNRS-INSERM-UdS. Université de Lorraine, Francia

Paul D. Adams
Lawrence Berkeley National Laboratory. University of California Berkeley, Estados Unidos

Resumen


El refinamiento es un paso clave en el proceso de determinación de una estructura cristalográfica al garantizar que la estructura atómica de la macromolécula final represente de la mejor manera posible los datos de difracción. Han hecho falta varias décadas para poder desarrollar nuevos métodos y herramientas computacionales dirigidas a dinamizar esta etapa. En este artículo ofrecemos un breve resumen de los principales hitos en la computación cristalográfica y de los nuevos métodos relevantes para el refinamiento de estructuras.

Palabras clave


cálculos rápidos de gradiente; constricciones; factores de estructura; mapas de Fourier; máxima verosimilitud; medio acuoso; minimización; neutrones; optimización; rayos-X; refinamiento; restricciones

Texto completo:


HTML PDF XML

Referencias


Abagyan, R. A., Totrov, M. M. and Kuznetsov, D. A. (1994). ICM – a new method for protein modeling and design – Applications to docking and structure prediction from the distorted native conformation. Journal of Computational Chemistry, 15, pp. 488-506. http://dx.doi.org/10.1002/jcc.540150503

Adams, P. D., Mustyakimov, M., Afonine, P. V. and Langan, P. (2009). Generalized X-ray and neutron crystallographic analysis: more accurate and complete structures for biological macromolecules. Acta Crystallographica, D65, pp. 567-573. http://dx.doi.org/10.1107/S0907444909011548 PMid:19465771 PMCid:PMC2685734

Adams, P. D., Pannu, N. S., Read, R. J. and Bru.nger, A. T. (1997). Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. Proceedings of National Academy of Science, 94, pp. 5018-5023. http://dx.doi.org/10.1073/pnas.94.10.5018

Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. -W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. and Zwart, P. H. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica, D66, pp. 213-221. http://dx.doi.org/10.1107/S0907444909052925 PMid:20124702 PMCid:PMC2815670

Afonine, P., Lunin, V. Y. and Urzhumtsev, A. (2003). MLMF: least-squares approximation of likelihood-based refinement criteria. Journal of Applied Crystallography, 36, pp. 158-159. http://dx.doi.org/10.1107/S0021889802021738

Afonine, P. V., Grosse-Kunstleve, R. W., Adams, P. D., Lunin, V. Y. and Urzhumtsev, A. (2007). On macromolecular refinement at subatomic resolution with interatomic scatterers. Acta Crystallographica, D63, pp. 1194-1197. http://dx.doi.org/10.1107/S0907444907046148 PMid:18007035 PMCid:PMC2808317

Afonine, P. V., Grosse-Kunstleve, R. W., Urzhumtsev, A. and Adams, P. D. (2009). Automatic multiple-zone rigid-body refinement with a large convergence radius. Journal of Applied Crystallography, 42, pp. 607-615. http://dx.doi.org/10.1107/S0021889809023528 PMid:19649324 PMCid:PMC2712840

Afonine, P. V., Mustyakimov, M., Grosse-Kunstleve, R. W., Moriarty, N. W., Langan, P. and Adams, P. D. (2010). Joint X-ray and neutron refinement with phenix.refine. Acta Crystallographica, D66, pp. 1153-1163. http://dx.doi.org/10.1107/S0907444910026582 PMid:21041930 PMCid:PMC2967420

Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd, J. J., Moriarty, N. W.; Mustyakimov, M., Tenwilliger, T. C. Urzhumtsev, A. and Zwart, P. H. (2012). Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallographica, D68, pp. 352-367. http://dx.doi.org/10.1107/S0907444912001308 PMid:22505256 PMCid:PMC3322595

Afonine, P. V., Grosse-Kunstleve, R. W., Adams, P. D. and Urzhumtsev, A. (2013). Bulk-solvent and overall scaling revisited: faster calculations, improved results. Acta Crystallographica, D69, pp. 625-634. http://dx.doi.org/10.1107/S0907444913000462 PMid:23519671 PMCid:PMC3606040

Agarwal, R. C. (1978). A new least-squares refinement technique based on the fast Fourier transform algorithm. Acta Crystallographica, A34, pp. 791-809. http://dx.doi.org/10.1107/S0567739478001618 http://dx.doi.org/10.1107/S0567739478001618

Agarwal, R. C. (1981). New results on fast Fourier least-squares refinement technique. In Machin, P. A., Campbell, J. W. and Elder, M. (comps.). Refinement of Protein Structures. Proceedings of the Daresbury Study Weekend, 15-16 November 1980. Daresbury, Warrington: Science and Engineering Research Council, Daresbury Laboratory, pp. 24-28.

Ambartsumian, V. A. (1929). On the Relationship between the Solution and the Resolvente of the Integral Equation of the Radiative Balance. Zeitschrift fu.r Physik, 52, pp. 263-267.

Baur, W. and Strassen, V. (1983). The complexity of partial derivatives. Theoretical Computer Science, 22, pp. 317-330. http://dx.doi.org/10.1016/0304-3975(83)90110-X

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. and Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28, pp. 235-242. http://dx.doi.org/10.1093/nar/28.1.235 PMid:10592235 PMCid:PMC102472

Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. and Tasumi, M. (1977). The Protein Data Bank: a computer- based archival file for macromolecular structures. Journal of Molecular Biology, 112, pp. 535-542. http://dx.doi.org/10.1016/S0022-2836(77)80200-3

Blanc, E., Roversi, P., Vonrhein, C., Flensburg, C., Lea, S. M. and Bricogne, G. (2004). Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallographica, D60, pp. 2210-2221. http://dx.doi.org/10.1107/S0907444904016427 PMid:15572774

Booth, A. D. (1947). Application of the method of steepest descents to X-ray structure analysis. Nature, 160, p. 196. http://dx.doi.org/10.1038/160196a0

Bricogne, G. and Irwin, J. (1996). Maximum likelihood structure refinement: theory and implementation within BUSTER + TNT. In Dodson, E. J., Moore, M., Ralph, A. and Bailey, S. (eds.). Macromolecular Refinement: Proceedings of the CCP4 Study Weekend. Daresbury, Warrington: Science and Engineering Research Council, Daresbury Laboratory, pp. 85-92.

Brünger, A. T., Kuriyan, J. and Karplus, M. (1987). Crystallographic R factor refinement by molecular dynamics. Science, 235, pp. 458- 460. http://dx.doi.org/10.1126/science.235.4787.458 PMid:17810339

Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilqes, M., Pannu, N. S., Read, R. J., Rice, L. M., Somonson, T. and Warren, G. L. (1998). Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallographica, D54, pp. 905-921. http://dx.doi.org/10.1107/S0907444998003254

Canfield, P., Dahlbom, M. G., Reimers, J. R. and Hush, N. S. (2006). Density-functional geometry optimization of the 150,000-atom photosystem-I trimer. Journal of Chemical Physics, 124, pp. 024301-024315. http://dx.doi.org/10.1063/1.2148956 PMid:16422577

Chapman, M. (1995). Restrained real-space macromolecular atomic refinement using a new resolution-dependent electron- density function. Acta Crystallographica, A51, pp. 69-80. http://dx.doi.org/10.1107/S0108767394007130

Cochran, W. (1948). The Fourier method for crystal-structure analysis. Acta Crystallographica, 1, pp. 138-142. http://dx.doi.org/10.1107/S0365110X48000375

Cooley, J. W. and Tukey, J. W. (1965). An algorithm for machine calculation of complex Fourier series. Mathematics of Computation, 19, pp. 297-301. http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1

Diamond, R. (1971). A real-space refinement procedure for proteins. Acta Crystallographica, A27, pp. 436-452. http://dx.doi.org/10.1107/S0567739471000986

Dodson, E. J., Isaacs, N. W. and Rollett, J. S. (1976). A method for fitting satisfactory models to sets of atomic positions in protein structure refinements. Acta Crystallographica, A32, pp. 311-315. http://dx.doi.org/10.1107/S0567739476000685

Driessen, H., Haneef, M. I. J., Harris, G. W., Howlin, B., Khan, G. and Moss, D. S. (1989). TLSANL - TLS parameter-analysis program for segmented anisotropic refinement of macromolecular structrures. Journal of Applied Crystallography, 22, pp. 510-516. http://dx.doi.org/10.1107/S0021889889004097

Ewald, P. P. (1913). About the theory of the interference of X-rays in crystals (Zur Theorie der interferenzen der Röntgen-strahlen in kristallen). Physikalische Zeitschrift, 14, pp. 465–472.

Falköf, O., Collyer, C. A. and Reimers, J. R. (2012). Toward ab initio refinement of protein X-ray crystal structures: interpreting and correlating structural fluctuations. Theoretical Chemistry Accounts, 131, 1076.

Fenn, T. D., Schnieders, M. J. and Bru.nger, A. T. (2010). A smooth and differentiable bulk-solvent model for macromolecular diffraction. Acta Crystallographica, D66, pp. 1024–1031. http://dx.doi.org/10.1107/S0907444910031045 PMid:20823553 PMCid:PMC2935282

Finzel, B. C. (1987). Incorporation of fast Fourier-transforms to speed restrained least-squares refinement of protein structures. Journal of Applied Crystallography, 20, pp. 53-55. http://dx.doi.org/10.1107/S0021889887087144

Freer, S. T., Alden, R. A., Carter, W. C. Jr. and Kraut, J. (1975). Crystallographic structure refinement of chromatium high potential iron protein at two Angstroms resolution. Journal of Biological Chemistry, 250, pp. 46-54.

Guillot, B., Viry, L., Guillot, R., Lecomte, C. and Jelsch., C. (2001). Refinement of proteins at subatomic resolution with MOPRO. Journal of Applied Crystallography, 34, pp. 214-223. http://dx.doi.org/10.1107/S0021889801001753

Haneef, I., Moss, D. S., Stanford, M. J. and Borkakoti, N. (1985). Restrained structure- factor least-squares refinement of protein structures using a vector processing computer. Acta Crystallographica, A41, pp. 426-433. http://dx.doi.org/10.1107/S0108767385000915

Hansen, N. K. and Coppens, P. (1978). Testing aspherical atom refinements on small-molecule data sets. Acta Crystallographica, A34, pp. 909-921. http://dx.doi.org/10.1107/S0567739478001886

Headd, J. J., Echols, N., Afonine, P. V., Grosse-Kunstleve, R. W., Chen, V. B., Moriarty, N. W.,Richardson, D. C., Richardson, J. S. and Adams, P. D. (2012). Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution. Acta Crystallographica, D68, pp. 381-390.

Headd, J. J., Echols, N., Afonine, P. V., Moriarty, N. W., Gildea, R. J. and Adams, P. D. (2014). Flexible torsion-angle noncrystallographic symmetry restraints for improved macromolecular structure refinement. Acta Crystallographica, D70, pp. 1346-1356. http://dx.doi.org/10.1107/S1399004714003277 PMid:24816103 PMCid:PMC4014122

Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49, pp. 409-436. http://dx.doi.org/10.6028/jres.049.044

Hendrickson, W. A. and Konnert, J. H. (1980). In Srinivasan, R., Subramanian, E. and Yathindra, N. (eds.). Biomolecular Structure, Conformation, Function, and Evolution (vol. 1). New York: Pergamon, pp. 43-57.

Hughes, E. W. (1941). The crystal structure of melanine. Journal of the Amererican Chemical Society, 63, pp. 1737-1752. http://dx.doi.org/10.1021/ja01851a069

Jack, A. and Levitt, M. (1978). Refinement of large structures by simultaneous minimization of energy and R factor. Acta Crystallographica, A34, pp. 931-935. http://dx.doi.org/10.1107/S0567739478001904

Jelsch., C., Guillot, B., Lagoutte, A. and Lecomte, C. (2005). Advances in protein and small-molecule charge-density refinement methods using MoPro. Journal of Applied Crystallography, 38, pp. 38-54. http://dx.doi.org/10.1107/S0021889804025518

Jiang, J.-S. and Bru.nger, A. T. (1994). Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuroaminidase crystal structures. Journal of Molecular Biology, 243, pp. 100-115. http://dx.doi.org/10.1006/jmbi.1994.1633

Kalinin, D. I. (1980). Use of a cylindrical model of a protein to determine the spatial structure of the rhombic modification of leghaemoglobin. Soviet Physics. Crystallography, 25, pp. 307-313.

Kim, K. M., Nesterov, Yu. E. and Cherkassky, B. V. (1984). Ocenka trudoemkosti vyčislenija gradienta. Doklady Academii Nauk SSSR, 275, pp. 1306-1309.

Konnert, J. H. (1976). A restrained-parameter structure-factor least-squares refinement procedure for large asymmetric units. Acta Crystallographica, A32, pp. 614-617. http://dx.doi.org/10.1107/S0567739476001289

Konnert, J. H. and Hendrickson, W. A. (1980). A restrained-parameter thermal-factor refinement procedure. Acta Crystallographica, A36, pp. 344-350. http://dx.doi.org/10.1107/S0567739480000794

Lanczos, C. (1952). Solution of systems of linear equations by minimized iterations. Journal of Research of the National Bureau of Standards, 49, pp. 33-53. http://dx.doi.org/10.6028/jres.049.006

Lunin, V. Y. and Urzhumtsev, A. (1983). Program construction for refinement of macromolecular atomic structures on the base of Fast Fourier transformation and Fast differentiation algorithms. Preprint, Pushchino, ONTI NCBI.

Lunin, V. Y. and Urzhumtsev, A. (1984). Improvement of protein phases by coarse model modification. Acta Crystallographica, A40, pp. 269-277. http://dx.doi.org/10.1107/S0108767384000544

Lunin, V. Y. and Urzhumtsev, A. (1985). Program construction for macromolecule atomic model refinement based on the fast Fourier transform and fast differentiation algorithms. Acta Crystallographica, A41, pp. 327-333. http://dx.doi.org/10.1107/S010876738500071X

Lunin, V. Y., Afonine, P. V. and Urzhumtsev, A. (2002). Likelihood-based refinement. I. Irremovable model errors. Acta Crystallographica, A58, pp. 270-282.

Murshudov, G. N., Vagin, A. A. and Dodson, E. J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallographica, D53, pp. 240-255. http://dx.doi.org/10.1107/S0907444996012255 PMid:15299926

Pannu, N. S. and Read, R. J. (1996). Improved Structure Refinement Through Maximum Likelihood. Acta Crystallographica, A52, pp. 659-668. http://dx.doi.org/10.1107/S0108767396004370

Pannu, N. S., Murshudov, G. N., Dodson, E. J. and Read, R. J. (1998). Incorporation of Prior Phase Information Strengthens Maximum-Likelihood Structure Refinement. Acta Crystallographica, D54, pp. 1285–1294. http://dx.doi.org/10.1107/S0907444998004119

Reimers, J. R. (2011). Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology. Hoboken, New Jersey: Wiley. http://dx.doi.org/10.1002/9780470930779

Rice, L. M. and Brunger, A. T. (1994). Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins: Structure, Function and and Genetics, 19, pp. 277-290. http://dx.doi.org/10.1002/prot.340190403 PMid:7984624

Runge, C. and König, D. (1924). Die Grundlehren der mathematischen Wissenschaften (vol. II). Berlin: Springer.

Sayre, D. (1951). The calculation of structure factors by Fourier summation. Acta Crystallographica, 4, pp. 362-367. http://dx.doi.org/10.1107/S0365110X51001124

Scheringer, C. (1963). Least-squares refinement with the minimum number of parameters for structures containing rigid-body groups of atoms. Acta Crystallographica, 16, pp. 546-550. http://dx.doi.org/10.1107/S0365110X63001444

Schnieders, M. J., Fenn, T. D., Pande, V. S. and Brunger, A. T. (2009). Polarizable atomic multipole X-ray refinement: application to peptide crystals. Acta Crystallographica, D65, pp. 952-965. http://dx.doi.org/10.1107/S0907444909022707 PMid:19690373 PMCid:PMC2733883

Schomaker, V. and Trueblood, K. N. (1968). On rigid-body motion of molecules in crystals. Acta Crystallographica, B24, pp. 63-76. http://dx.doi.org/10.1107/S0567740868001718

Sheldrick, G. M. and Schneider, T. R. (1997). SHELXL: High-resolution refinement. Methods in Enzymology, 277B, pp. 319-343. http://dx.doi.org/10.1016/S0076-6879(97)77018-6

Steigemann, W. (1974). Ph.D. thesis, Technische Universitat, München.

Sussman, J. L., Holbrook, S. R., Church, G. M. and Kim, S.-H. (1977). Structure-factor least-squares refinement procedure for macromolecular structures using constrained and restrained parameters. Acta Crystallographica, A33, pp. 800-804. http://dx.doi.org/10.1107/S0567739477001958

Ten Eyck, L. F. (1973). Crystallographic fast Fourier transforms. Acta Crystallographica, A29, pp. 183-191. http://dx.doi.org/10.1107/S0567739473000458

Ten Eyck, L. F. (1977). Efficient structure-factor calculation for large molecules by the fast Fourier transform. Acta Crystallographica, A33, pp. 486-492. http://dx.doi.org/10.1107/S0567739477001211

Tronrud, D. E., Ten Eyck., L. F. and Matthews, B. W. (1987). An efficient general- purpose least-squares refinement program for macromolecular structures. Acta Crystallographica, A43, pp. 489-501. http://dx.doi.org/10.1107/S0108767387099124

Tronrund, D. E. (1992). Conjugate-direction minimization: an improved method of the refinement of macromolecules. Acta Crystallographica, A48, pp. 912-916. http://dx.doi.org/10.1107/S0108767392005415

Turk, D. (1992). PhD thesis. Technische Universität München, Germany.

Urzhumtsev, A. G., Lunin, V. Yu. and Vernoslova, E. A. (1989). FROG - high-speed restraint-constraint refinement program for macromolecular structure. Journal of Applied Crystallography, 22, pp. 500-506. http://dx.doi.org/10.1107/S0021889889004905

Watenpaugh, K. D., Sieker, L. C., Herriott, J. R. and Jensen, L. H. (1973). Refinement of model of a protein - rubredoxin at 1.5 Å resolution. Acta Crystallographica, B29, pp. 943-956. http://dx.doi.org/10.1107/S0567740873003675

Westhof, E., Dumas, Ph. and Moras, D. (1988). Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. Acta Crystallographica, A44, pp. 112-123. http://dx.doi.org/10.1107/S010876738700446X




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista arbor@csic.es

Soporte técnico soporte.tecnico.revistas@csic.es