Arbor, Vol 191, No 772 (2015)

Generación rayos X – mayoría de edad


https://doi.org/10.3989/arbor.2015.772n2007

Gavin Connor Fox
Synchrotron Soleil, Francia

Resumen


La comunidad científica celebró en 2014 el impacto que la cristalografía ha tenido sobre la ciencia fundamental y aplicada, así como los de descubrimientos relevantes que nos han proporcionado una visión del mundo a escala molecular y nanométrica. La UNESCO ha declarado 2015 como el Año Internacional de la Luz por lo que quizás es un buen momento para reflexionar sobre el papel que han jugado y juegan los sincrotrones en esta ciencia. El acceso a la radiación sincrotrón ha revolucionado nuestra capacidad para explorar las propiedades, interacciones y estructura de materiales, así como ampliado nuestro conocimiento en distintos contextos científicos, desde el patrimonio cultural a la nanotecnología y nuevos materiales, hasta la exploración de sistemas celulares y búsqueda de fármacos. El rango de potenciales aplicaciones de los sincrotrones y sus campos de interés es vasto y queda fuera del alcance de un único artículo por lo que la intención del autor es la de proporcionar una imagen de los sincrotrones obtenida a través del filtro de la cristalografía macromolecular. Echaremos la vista atrás para ver cómo los sincrotrones han ido evolucionado hasta llegar a las actuales instalaciones en donde las líneas de trabajo asociadas a los mismos se están adaptado rápidamente a la introducción de las técnicas de alto rendimiento en el cambio del milenio; pero también miraremos hacia el futuro, hacia las nuevas tendencias y tecnologías que ya están transformando las actuales instalaciones y la misma cristalografía.

Palabras clave


biología estructural; cristalografía de proteínas; cristalografía en serie; línea; fuentes de luz; microfluídica; proteínas de membrana; sincrotrón; XFEL

Texto completo:


HTML PDF XML

Referencias


Aishima J., Owen R. L., Axford D., Shepherd E., Winter G., Levik K., Gibbons, P., Ashton, A. y Evans, G. (2009). High-speed crystal detection and characterization using a fast-readout detector. Acta Crystallographica, D66, pp. 1032-1035.

Arndt, U. W. and Wonacott, A. J. (eds.) (1977). The Rotation Method in Crystallography. Amsterdam: North-Holland.

Axford D., Owen, R. L., Aishima, J., Foadi, J., Morgan, A. W., Robinson, J. I., Nettleship, J., Owens, R. J., Moraes, I., Fry, E. E., Grimes, J. M., Harlos, K., Kotecha, A., Ren, J., Sutton, G., Walter, T. S., Stuart, D. I. and Evans, G. (2012). In situ macromolecular crystallography using microbeams. Acta Crystallographica, D68, pp. 592–600.

Bingel-Erlenmeyer, R., Olieric, V., Grimshaw, J. P. A., Gabadinho, J., Wang, X., Ebner, S. G., Isenegger, A., Schneider, R., Schneider, J., Glettig, W., Pradervand, C., Panepucci, E. H., Tomizaki, T., Wang, M. and Schulze-Briese, C. (2011). SLS crystallization platform at beamline X06DA – a fully automated pipeline enabling in situ X-ray diffraction screening. Crystal Growth & Design, 11, 4, pp. 916-923.

Blewett, J. W. (1946). Radiation losses in the induction electron accelerator. Physical Review, 69, pp. 87-95.

Bonifacio, R., Pellegrini, C. and Narducci, L. (1984). Collective instabilities and high-gain regime in a free electron laser. Optics Communication, 50, pp. 373-378.

Bosco, P., Colson, W. B. and Freeman, R. A. (1983). Quantum/classical mode evolution in the free-electron laser oscillators. IEEE Journal of Quantum Electronics, QE-19, pp. 272-281.

Bourenkova, G. P. and Popov, A. N. (2010). Optimization of data collection taking radiation damage into account. Acta Crystallographica, D66, pp. 409-419.

Bowler, M. W., Guijarro, M., Petitdemange, S., Baker, I., Svensson, O., Burghammer, M., Mueller-Dieckmann, C., Gordon, E. J., Flot, D., McSweeny, S. M. and Leonard, G. A. (2010). Diffraction cartography: applying microbeams to macromolecular crystallography sample evaluation and data collection. Acta Crystallographica, D66, pp. 855-864.

Brau, Ch. A. (2004). Modern Problems in Classical Electrodynamics. Oxford: Oxford University Press.

Broennimann, C., Eikenberry, E. F., Henrich, B., Horisberger, R., Huelsen, G., Pohl, E., Schmitt, B., Schulze-Briese, C. Suzuki, M., Tomizaki, T., Toyokawa, H. and Wagner, A. (2006). The Pilatus 1M detector. Journal of Synchrotron Radiation, 13, pp. 120-130.

Caffrey, M., Li, D., Howe, N. and Shah, S. T. A. (2014). 'Hit and run' serial femtosecond crystallography of a membrane kinase in the lipid cubic phase. Philosophical Transactions of the Royal Society B, 369, 20130621.

Chapman, H. N., Hau-Riege, S. P., Bogan, M. J., Bajt, S., Barty, A., Boutet, S., Marchesini, S., Frank, M., Woods, B. W., Benner, W. H., London, R. A., Rohner, U., Szöke, A., Spiller, E., Möller, T., Bostedt, C., Shapiro, D. A., Kuhlman, M., Treusch, R., Plönjes, E., Burmeister, F., Begh, M., Caleman, C., Huldt, G., Seibert, M. M. and Hajdu, J. (2007). Femtosecond time-delay X-ray holography. Nature, 448, pp. 676-679.

Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., Hunter, M. S., Schulz, J., DePonte, D. P., Weierstall, U., Doak, R. B., Maia, F. R. N. C., Martin, A. V., Schlichting, I., Nicola Coppola, L. L., Shoeman, R. L., Epp, S. W., Hartmann, R., Rolles, D., Rudenko, A., Fouca, L., Kimmel, N., Weidenspointner, G., Holl, P. (2011). Femtosecond X-ray protein nanocrystallography. Nature, 470, pp. 73–77.

Chasman, R. and Green, G. K. (1975). Preliminary design of a dedicated synchrotron radiation facility. IEEE Transactions on Nuclear Science, 22, pp. 1765-1767.

Chavas, L. M. G., Matsugaki, N., Yamada, Y., Hiraki, M., Igarashi, N., Suzuki, M. and Wakatsuki, S. (2012). Beamline AR-NW12A: high-throughput beamline for macromolecular crystallography at the Photon Factory. Journal of Synchrotron Radiation, 19, pp. 450–454.

Cherezov, V., Hanson, M. A., Mark T. Griffith, M. T., Hilgart, M. C., Sanishvili, R., Nagarajan, V., Stepanov. S., Fischetti, R. F., Kuhn, P. and Stevens, R. C. (2009). Rastering strategy for screening and centering of microcrystals samples of human membrane proteins with a sub-10 μm size X-ray. Journal of the Royal Society Interface, 6, pp. S587-S597.

Cipriani, F., Rower, M., Landret, C., Zander, U., Felisaz, F. and Marquez, J. A. (2012). CrystalDirect: a new method for automated crystal harvesting based on laser-induced photoablation of thin films. Acta Crystallographica, D68, pp. 1393-1399.

Couprie, M. E., Benabderrahmane, C., Betinelli, P., Bouvet, F., Buteau, A., Cassinari, L., Daillant, J., Denard, J. C., Eymard, P., Gagey, B., Herbeaux, C., Labat, M., Lagarde, B., Lestrade, A., Loulergue, A., Marchand, P. Marlats, J. L., Miron, C., Morin, P., Nadij, A., Polack, F., Pruvost, J. B., Ribeiro, F., Ricaud, J. P., Roy, P., Tanikawa, T., Roux, R., Bielawski, S., Evain, C., Szwaj, C., Lambert, G., Lifschitz, A., Malka, V., Lehe, R., Rousse, A., Ta Phuoc, K., Taury, C., Devanz, G., Luong, M., Carré, B., LeBec, G., Farvacque, L.Dubois, A. and Lu.ning, J. (2013). The LUNEX5 project in France. Journal of Physics: Conference Series, 425, 072001.

Dattoli, G., Gallardo, J. C., Renieri, A., Richetta, M. and Torre, A. (1985). Quantum coherence properties of the FEL. Nuclear Instruments and Methods in Physics Research A, 237, pp. 93-99.

Dauter, Z. (1999). Data collection strategies. Acta Crystallographica, D55, pp. 1703-1717.

Dauter, Z., Dauter, M. and Dobson, E. (2002). Jolly SAD. Acta Crystallographica, D58, pp. 494-506.

Dauter, Z. (2005). Efficient use of synchrotron radiation for macromolecular diffraction data collection. Progress in Biophysics and Molecular Biology, 89, pp. 153-172.

Dean, A. J., Clark, D. J., Stephen, J. B., McBride, V. A., Bassani, L., Bazzano, A., Bird, A. J., Hill, A. B., Shaw, S. E. and Ubertini, P. (2008). Polarized gamma-ray emission from the Crab. Science, 321, pp. 1183–1185.

Degen, D., Feng, Y., Zhang, Y., Ebright, K. Y., Ebright, Y. W., Gigliotti, M., Vahedian-Movahed, H., Mandal, S., Talaue, M., Connell, N., Arnold, E., Fenical, W. and Ebright, R. H. (2014). Transcription inhibition by the depsipeptide antibiotic salinamide A. eLife, 3, e02451.

Delagenière, S., Brenchereau, P., Launer, L., Ashton, A. W., Leal, R., Veyrier, S., Gabadinho, J., Gordon, E. J., Jones, S. D., Levik, K. E., McSweeney, S. M., Monaco, S., Nanao, M., Spruce, D., Svensson, O. Walsh, M. A. and Leonard, G. A. (2011). ISPyB: an information management system for synchrotron macromolecular crystallography. Bioinformatics, 27, pp. 3186-3192.

Demirci, H., Sierra, R. G., Laksmono, H., Shoeman, R. L., Botha, S., Barends, T. R. M., Nass, K., Schlichting, I., Doak, R. B., Gati, C., Williams, G. J., Boutet, S., Messerschmidt, M., Jogl, G. Dahlberg, A. E., Gregory, S. T. and Bogan, M. J. (2013). Serial femtosecond X-ray diffraction of 30S ribosomal subunit microcrystals in liquid suspension at ambient temperature using X-ray free-electron-laser. Acta Crystallographica, F69, pp. 1066-1069.

Dhouib, K., Malek, C-K., Pfleging, W., Gauthier-Manuel, B., Duffait, R., G. Thuillier, G., Ferrigno, R., Jacquamet, L., Ohana, J., Ferrer, J. L., Théobald-Dietrich, A., Giegé, R., Lorber, B. and Sauter, C. (2009). Microfluidic chips for the crystallization of biomacromolecules by counterdiffusion and on-chip crystal X-ray analysis. Lab on a Chip, 9, pp. 1412-1421.

Elder, F. R., Gurewitsch, A. M., Langmuir, R. V. and Pollock, H. C. (1947). Radiation from electrons in a synchrotron. Physical Review, 71, pp. 829-830.

Elder, F. R., Langmuir, R. V. and Pollock, H. C. (1948). Radiation from electrons accelerated in a synchrotron. Physical Review, 74, pp. 52-58.

Elias, L. R., Fairbank, W. M., Madey, J. M. J., Schwettman, H. A. and Smith, T. I. (1976). Observation of Stimulated Emission of Radiation by Relativistic Electrons in a Spatially Periodic Transverse Magnetic Field. Physical Review Letters, 36, pp. 717–720.

Evans, G., Axford, D., Waterman, D. and Owen R. L. (2011). Macromolecular microcrystallography. Crystallography Reviews, 17, pp. 105–142.

Foadi, J., Aller, P., Alguel, Y., Cameron, A., Axford, D., Owen, R., Armour, W., Waterman, D. G., Iwata, S. and Evans, G. (2013). Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallographica, D69, pp. 1617-1632.

Fodje, M., Janzen, K., Berg, R., Black, G., Labiuk, S., Gorin, J. and Grochulski, P. (2012). MxDC and MxLIVE: software for data acquisition, information management and remote access to macromolecular crystallography beamlines. Journal of Synchrotron Radiation, 19, pp. 274–280.

Gati, C., Bourenkov, G., Klinge, M., Rehders, D., Stellato, F., Oberthu.r, D., Yefanov, O., Sommer, B. P., Mogk, S., Duszenko, M., Betzel, C., Schneider, T. R., Chapman, H. N. and Redecke, L. (2014). Serial crystallography on in vivo grown crystals using synchrtotron radiation. IUCrJ, 1-2, pp. 87-94.

Harrison, J., Joshi, A., Lake, J., Candler, R. and Musumeci, P. (2012). Surface-micromachined magnetic undulator with period length between 10 μm and 1 mm for advanced light sources. Physical Review Special Topics - Accelerators and Beams, 15, 070703.

Hendrickson, W. A. and Ogata, C. M. (1997). Phase determination from multiwavelength anomalous diffraction measurements. Methods in Enzymology, 276, pp. 494-523.

Incardona, M.-F., Bourenkov, G. P., Levik, K., Pieritz, R. A., Popov, A. N. and Svensson. O. (2009). EDNA: a framework for plugin- based applications applied to X-ray experiment online data analysis. Journal of Synchrotron Radiation, 16, pp. 872-879. http://dx.doi.org/10.1107/S0909049509036681 PMid:19844027

Iwanenko, D. and Pomeranchuk, I. (1944). On the maximal energy attainable in a bebatron. Physical Review, 65, p. 343. http://dx.doi.org/10.1103/PhysRev.65.343

Jacquamet, L., Ohana, J., Joly, J., Borel, F., Pirocchi, M., Charrault, P., Bertoni, A., Israel-Gouy, P., Carpentier, P., Kozielski, F., Blot, D. and Ferrer, J. L. (2004). Automated analysis of vapor diffusion crystallization drops with an X-ray beam. Structure, 12, pp. 1219–1225. http://dx.doi.org/10.1016/j.str.2004.04.019 http://dx.doi.org/10.1016/j.str.2004.04.019

Johansson, L. C., Arnlund, D., Katona, G., White, T. A., Barty, A., DePonte, D. P., Shoeman, R. L., Wickstrand, C., Sharma, A., Williams, G. J., Aquila, A., Bogan, M. J., Caleman, C., Davidsson, J. Doak, R. B., Frank, M., Fromme, R., Galli, L., Grotjohann, I. and Hunter, M. S. (2013). Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography. Nature Commununications, 4, 2911. http://dx.doi.org/10.1038/ncomms3911

Kern, J., Alonso-Mori, R., Tran, R., Hattne, J., Gildea, R. J., Echols, N., Glöckner, C., Hellmich, J., Laksmono, H., Sierra, R. G., Lassalle-Kaiser, B., Koroidov, S., Lampe, A., Han, G., Gul, S., DiFiore, D., Milathianaki, D., Fry, A. R., Miahnarhri, A., Schafer, D. W., Messerschmidt, M., Seibert, M. M., Koglin, J. E., Sokaras, D., Weng T.-C., Sellberg, J., Latimer, M. J., Grosse-Kunstleve, R. W., Zwart, P. H., White, W. E., Glatzel, P., Adams, P. D., Bogan, M. J., Williams, G. J., Boutet, S., Messinger, J., Zouni, A., Sauter, N., Yachandra, V. K., Bergman, U. and Yano, J. (2013). Simultaneous femtosencond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science, 340, pp. 491-495. http://dx.doi.org/10.1126/science.1234273 PMid:23413188 PMCid:PMC3732582

Khatter, H., Myasnikov, A. G., Mastio, L., Billas, I. M. L., Birck, C., Stella, S. and Klaholz, B. P. (2014). Purification, characterization and crystallization of the human 80S ribosome. Nucleic Acids Research, 42, e49. http://dx.doi.org/10.1093/nar/gkt1404 PMid:24452798 PMCid:PMC3973290

Khounsary, A. M., Freund, A. K., Ishikawa, T., Srajer, G. and Lang, J. C. (eds.) (1999). X-ray optics design, performance, and applications. Proceedings SPIE 3773. Bellingham, WA.

Kim, K.-J. (1986). Three-dimensional analysis of coherent amplification and self-amplified spontaneous emission in Free-electron lasers. Physical Review Letters, 57, pp. 1871-1874. http://dx.doi.org/10.1103/PhysRevLett.57.1871 PMid:10033571

Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., Spence, J. C., Hunter, M., Fromme, P., White, T., Chapman, H. N. and Holton, J. (2010). Femtosecond protein nanocrystallography – data analysis methods. Journal of Optics Express, 18, pp. 5713-5723. http://dx.doi.org/10.1364/OE.18.005713 PMid:20389587

Krojer, T., Pike, A. C. W. and von Delft, F. (2013). Squeezing the most from every crystal: the fine details of data collection. Acta Crystallographica, D69, pp. 1303–1313. http://dx.doi.org/10.1107/S0907444913013280 PMid:23793157 PMCid:PMC3689534

Landau, E.M., and Rosenbusch, J.P. (1996). Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proceedings of National Academy of Sciences of the USA, 93, pp. 14532–14535. http://dx.doi.org/10.1073/pnas.93.25.14532

Larmor, J. (1897). A dynamical theory of the electric and luminiferous medium. Part III. Relations with material media. Philosophical Transactions of the Royal Society A, 190, pp. 205-493. http://dx.doi.org/10.1098/rsta.1897.0020

Lee, M. J. Y., Faucher, F. and Jia, Z. (2014). Growth of diffraction-quality protein crystals using a harvestable microfluidic device. Crystal Growth & Design, 14, pp. 3179–3181. http://dx.doi.org/10.1021/cg500450b PMid:25013386 PMCid:PMC4082397

Liénard, A. (1898). Champ électrique et magnétique produit par une charge électrique concentrée en un point et animée d'un mouvement quelconque. L'Eclairage électrique, 16, p. 5.

Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., Nelson, G., Weierstall, U., Katritch, V., Barty, A., Zatsepin, N. A., Li, D., Messerschmidt, M., Boutet, S., Williams, G. J., Koglin, J. E., Seibert, M. M., Wang, C., Shah, S. T. A., Basu, S., Fromme, R., Kupitz, C., Rendek, K. N., Grotjohann, I., Fromme, P. , Kirian, R. A., Beyerlein, K. R., White, T. A., Chapman, H. N., Caffrey, M., Spence, J. C. H., Stevens, R. C. and Cherezov, V. (2013). Serial femtosecond crystallography of G-coupled receptors. Science, 342, pp. 1522-1524. http://dx.doi.org/10.1126/science.1244142 PMid:24357322 PMCid:PMC3902108

Madey, J. M. J. (1971). Stimulated emission of Bremsstrahlung in a periodic magnetic field. Journal of Applied Physics, 42, pp. 1906–1913. http://dx.doi.org/10.1063/1.1660466

Minor W., Cymborowski, M., Otwinowski, Z. and Chruszcz, M. (2006). HKL-3000: the integration of data reduction and structure solution – from diffraction images to an initial model in minutes. Acta Crystallographica, D62, pp. 859-866. http://dx.doi.org/10.1107/S0907444906019949 http://dx.doi.org/10.1107/S0907444906019949

Monaco, S., Gordon, E., Bowler, M. W., Delagenière, S., Guijarro, M., Spruce, D., Svensson, O., McSweeney, S. M., McCarthy, A. A., Leonard, G. and Hanao, M. H. (2013). Automatic processing of macromolecular crystallography X-ray diffraction data at the ESRF. Journal of Applied Crystallography, 46, pp. 804-810. http://dx.doi.org/10.1107/S0021889813006195 PMid:23682196 PMCid:PMC3654316

Mueller, M., Wang, M. and Schulze-Briese, C. (2012). Optimal fine φ-slicing for single-photon-counting pixel detectors. Acta Crystallographica, D68, pp. 42-56. http://dx.doi.org/10.1107/S0907444911049833 PMid:22194332 PMCid:PMC3245722

Murphy, J. and Pellegrini, C. (1985). Generation of high-intensity coherent radiation in the soft-X-ray and vacumm-ultraviolet region. Journal of the Optical Society of America, B2, pp. 259-264. http://dx.doi.org/10.1364/JOSAB.2.000259

O'Neill, G. K. (1956). Storage-ring synchrotron: device for high-energy physics research. Physical Review, 102, pp.1418-1419. http://dx.doi.org/10.1103/PhysRev.102.1418

Owen, R. L., Paterson, N., Axford, D., Aishima, J., Schulze-Briese, C., Ren, Fry, E. E., Stuart, D. I. and Evans, G. (2014). Exploiting fast detectors to enter a new dimension in room-temperature crystallography. Acta Crystallographica, D70, pp.1248–1256. http://dx.doi.org/10.1107/S1399004714005379 PMid:24816094 PMCid:PMC4014120

Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P. and Landau, E. M. (1997). X-ray structure of bacteriorhodopsin at 2.5 Angstroms from microcrystals grown in lipidic phases. Science, 277, pp. 1676–1681.

Pellegrini, C. (1988). Progress toward a soft X-ray FEL. Nuclear Instruments and Methods in Physics Research A, 272, pp. 364-367. http://dx.doi.org/10.1016/0168-9002(88)90252-5

Perry, S. L., Roberts, G. W., Tice, J. D., Gennis, R. B. and Kenis, P. J. A. (2009). Microfluidic generation of lipidic mesophases for membrane protein crystallization. Crystal Growth & Design, 9, pp. 2566-2569. http://dx.doi.org/10.1021/cg900289d PMid:20161169 PMCid:PMC2721472

Qu, K., Zhou, L. and Dong, Y.-H. (2014). An improved integration method in serial femtosecond crystallography. Acta Crystallographica, D70, pp. 1202-1211. http://dx.doi.org/10.1107/S1399004714002004 PMid:24816090

Rajendran, C., Dworkowski, F. S. N., Wang, M. T. and Schulze-Briese, C. (2011). Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector. Journal of Synchrotron Radiation, 18, pp. 318-328. http://dx.doi.org/10.1107/S090904951100968X PMid:21525639 PMCid:PMC3133521

Redecke, L., Nass, K., DePonte, D. P., White, T. A., Rehders, D., Barty, A., Stellato, F., Liang, M., Barends, T. R., Boutet, S., Williams, G. J., Messerschmidt, M., Seibert, M. M., Aquila, A., Amlund, D., Bajt, S., Barth, T., Bogan, M. J., Caleman, C., Chao, T. C., Doak, R. B., Fleckenstein, H., Frank, M., Fromme, R., Gali, L. Grotjohann, I., Hunter, M. S., Johansson, L. C., Kassemeyer, S., Katona, G., Kirian, R. A., Koopman, R., Kupitz, C., Lomb, L., Martin, A. V., Mogk, S., Neutze, R., Shoeman, R. L., Steinbrener, J., Timneanu, N., Wang, D., Weierstall, U., Zatsepin, N. A., Spence, J. C., Fromme, P., Schlichting, I., Duszenko, M., Betzel, C. and Chapman, H. N. (2013). Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science, 339, pp. 227–230. http://dx.doi.org/10.1126/science.1229663 PMid:23196907 PMCid:PMC3786669

Sawhney, K., Alcock, S., Sutter, J, Berujon, S., Wang, H. and Signorato, R. (2013). Characterization of a novel super-polished bimorph mirror. Journal of Physics: Conference Series, 425, pp. 052026.

Schott, G. A. (1907). On the electron theory of matter and on radiation. Philosophical Magazine, 13, pp. 189-213. http://dx.doi.org/10.1080/14786440709463594

Schwinger, J. (1949). On the classical radiation of accelerated electrons. Physical Review, 75, pp. 1912-1925. http://dx.doi.org/10.1103/PhysRev.75.1912

Soltis, S. M., Cohen, A. E., Deacon, A., Eriksson, T., González, A., McPhillips, S., Chui, H., Dunten, P., Hollenbeck, M., Mathews, I., Miller, M., Moorhead, P., Phizackerley, R. P., Smith, C., Song, J., van dem Bedem, H., Ellis, P., Kuhn, P., McPhillips, T., Sauter, N., Sharp, K., Tsyba, I. and Wolf, G. (2008). New paradigm for macromolecular crystallography experiments at SSRL: automated crystal screening and remote data collection. Acta Crystallographica, D64, p. 1210-1221. http://dx.doi.org/10.1107/S0907444908030564 PMid:19018097 PMCid:PMC2631117

Stellato, F., Oberthu.r, D., Liang, M., Bean, R., Gati, C., Yefanov, O., Barty, A., Burckhardt, A., Fischer, P., Galli, L., Kirian, R. A., Meyer, J., Panneerselvam, S., Hong Yoon, C., Chervinskii, F., Speller, E., White, T. A., Betzel, C. Meents, A. and Chapman, H. N. (2014). Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ, 1, pp. 204-212. http://dx.doi.org/10.1107/S2052252514010070 PMid:25075341 PMCid:PMC4107920

Theveneau, P., Baker, R., Barrett, R., Beteva, A., Bowler, M. W., Carpentier, P., Caserotto, H., de Sanctis, D., Dobias, F., Flot, D., Guijarro, M., Guiraud, T., Lentini, M., Leonard, G. A., Mattenet, M., McArthy, A., McSweeney, S. M., Morawe, C., Nanao, M., Nurizzo, D., Ohlsson, S., Pernot, P., Popov, A. N., Round, A., Royant, A., Schmid, W., Snigirev, A., Surr, J. and Mueller-Dieckmann, C. (2013). The Upgrade Programme for the Structural Biology beam lines at the European Synchrotron Radiation Facility - High throughput sample evaluation and automation. Journal of Physics: Conference Series 425, 012001.

Trastoy, B., Lomino, J. V., Pierce, B. G., Carter, L. G., Gu.nther, S., Giddens, J. P., Snyder, G. A., Weiss, T. M., Weng, Z., Wang, L. X., Sundberg, E. J. (2014). Crystal structure of Streptococcus pyogenes EndoS, an immunomodulatory endoglycosidase specific for human IgG antibodies. Proceedings of National Academy of Sciences of the USA, 111, pp. 6714-6719. http://dx.doi.org/10.1073/pnas.1322908111 PMid:24753590 PMCid:PMC4020096

Warren, A. J., Armour, W., Axford, D., Basham, M., Connolley, T., Hall, D. R., Horrell, S., McAuley, K. E. and Mykhaylyk, A. (2013). Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging. Acta Crystallographica, D69, pp. 1252-1259. http://dx.doi.org/10.1107/S0907444913011359 PMid:23793151 PMCid:PMC3689528

Weierstall, U., Spence, J. C. H. and Doak, R. B. (2012). Injector for scattering measurements on fully solvated biospecies. Review of Scientific Instruments, 83, 035108. http://dx.doi.org/10.1063/1.3693040 PMid:22462961

Weierstall, U., James, D., Wang, Ch., White, T. A., Wang, D., Liu, W., Spence, J. C. H., Doak, R. B., Nelson, G., Fromme, P., Fromme, R., Grotjohann, I., Kupitz, C., Zatsepin, N. A., Liu, H., Basu, S., Wacker, D., Won Han, G., Katrich, V., Boutet, S. (2014). Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nature Commununications, 5, p. 3309. http://dx.doi.org/10.1038/ncomms4309

White, T. A., Barty, A., Stellato, F., Holton, J. M., Kirian, R. A., Zatsepin, N. A. and Chapman, H. N. (2013). Crystallographic data processing for free-electron laser sources. Acta Crystallographica, D69, pp. 1231-1240. http://dx.doi.org/10.1107/S0907444913013620 PMid:23793149 PMCid:PMC3689526

Winter. G. (2010). xia2: an expert system for macromolecular crystallography data reduction. Journal of Applied Crystallography, 43, pp.186-190. http://dx.doi.org/10.1107/S0021889809045701

Zeldin, O. B., Gerstel, M. and Garman, E. F. (2013). RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography. Journal of Applied Crystallography, 46, pp. 1225-1230. http://dx.doi.org/10.1107/S0021889813011461

Zwart, P. H., Grosse-Kunstleve, R. W. and Adams, P. D. (2005). Xtriage and Fest: automatic assessment of X-ray data and substructure structure factor estimation. CCP4 newsletter, 43.




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista arbor@csic.es

Soporte técnico soporte.tecnico.revistas@csic.es