Arbor, Vol 194, No 789 (2018)

Anemias raras y fallos medulares hereditarios


https://doi.org/10.3989/arbor.2018.789n3005

Joan Lluis Vives Corrons
Instituto de Investigación contra la Leucemia Josep Carreras. Hospital Clínic. Universidad de Barcelona, España
orcid http://orcid.org/0000-0003-1820-2594

Maria del Mar Mañú Pereira
Instituto de Investigación Vall d’Hebron. Hospital Universitario Vall d’Hebron, España
orcid http://orcid.org/0000-0003-4770-7460

Juan Pablo Trujillo
Universidad Autónoma de Barcelona - Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), España
orcid http://orcid.org/0000-0001-5901-9388

Jordi Surrallés
Universidad Autónoma de Barcelona - Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), España
orcid http://orcid.org/0000-0002-4041-7519

Julián Sevilla
Hospital Infantil Universitario Niño Jesús, España
orcid http://orcid.org/0000-0002-6852-1860

Resumen


Las anemias raras y los fallos medulares hereditarios son enfermedades hematológicas caracterizadas, respectivamente, por una disminución de la concentración de hemoglobina o por diversos grados de defectos en la producción de células hematopoyéticas que conducen desde una citopenia de un solo linaje hasta una de múltiples linajes. Son enfermedades raras y difíciles de diagnosticar debido a la heterogeneidad clínica, citológica y genética. En este artículo abordaremos en primer lugar el diagnóstico de las anemias raras y sus causas principales: fallos medulares, defectos del hematíe y trastornos del metabolismo de los factores de maduración eritrocitario. Seguidamente introduciremos los fallos medulares hereditarios y su patología asociada, como son las malformaciones congénitas y la predisposición tumoral, haciendo especial hincapié en los más frecuentes: la anemia de Fanconi, la disqueratosis congénitca, la anemia de Diamond-Blackfan y el síndrome de Shwachman-Diamond.

Palabras clave


Anemias raras; anemia ferropénica; talasemia; eritrocitos; hemoglobina; anemia de Fanconi; disqueratosis congénita; anemia de Diamond-Blackfan; síndrome de Shwachman-Diamond

Texto completo:


HTML PDF XML

Referencias


Ameziane, N., May, P., Haitjema, A., Vrugt, H. J. van de, Rossum-Fikkert, S. E. van, Ristc, D. […] y Rooimans, M. A. (2015). A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51. Nature Communications, 6, 8829. https://doi.org/10.1038/ncomms9829

Armanios, M., Chen, J.-L., Chang, Y.-P.C., Brodsky, R. A., Hawkins, A., Griffin, C. A. […] y Greider, C. W. (2005). Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proceedings of the National Academy of Sciences of the United States of America, 102 (44), pp. 15960-15964. https://doi.org/10.1073/pnas.0508124102 PMid:16247010 PMCid:PMC1276104

Auerbach, A. D. (2003). Diagnosis of Fanconi anemia by diepoxybutane analysis. Current Protocols in Human Genetics, 37 (1), pp. 8.7.1-8.7.15. https://doi.org/10.1002/0471142905.hg0807s37 PMid:18428345

Auerbach, A. D. (2009). Fanconi anemia and its diagnosis. Mutation Research / Fundamental and Molecular Mechanisms of Mutagenesis, 668 (1), pp. 4-10. https://doi.org/10.1016/j.mrfmmm.2009.01.013 PMid:19622403 PMCid:PMC2742943

Bain, B. J. (2005). Diagnosis from the blood smear. New England Journal of Medicine, 353 (5), 498-507. https://doi.org/10.1056/NEJMra043442 PMid:16079373

Bain, B. J. (2011). Haemoglobinopathy diagnosis: algorithms, lessons and pitfalls. Blood Reviews, 25 (5), pp. 205-213. https://doi.org/10.1016/j.blre.2011.04.001 PMid:21596464

Bianchi, P., Fermo, E. y Zanella, A. (2012). Reply to "Flow cytometry test for hereditary spherocytosis". Haematologica, 97 (12), e50-e51. https://doi.org/10.3324/haematol.2012.075150 PMCid:PMC3590077

Bluteau, D., Masliah-Planchon, J., Clairmont, C., Rousseau, A., Ceccaldi, R., Dubois d'Enghien, C. […] y Leblanc, T. (2016). Biallelic inactivation of REV7 is associated with Fanconi anemia. The Journal of Clinical Investigation, 126 (9), pp. 3580-3584. https://doi.org/10.1172/JCI88010 PMid:27500492 PMCid:PMC5004932

Bogliolo, M., Schuster, B., Stoepker, C., Derkunt, B., Su, Y., Raams, A. […] y Casado, J. A. (2013). Mutations in ERCC4, Encoding the DNA-Repair Endonuclease XPF, Cause Fanconi Anemia. The American Journal of Human Genetics, 92 (5), pp. 800-806. https://doi.org/10.1016/j.ajhg.2013.04.002 PMid:23623386 PMCid:PMC3644630

Calado, R. T. y Young, N. S. (2009). Telomere diseases. New England Journal of Medicine, 361 (24), pp. 2353-2365. https://doi.org/10.1056/NEJMra0903373 PMid:20007561 PMCid:PMC3401586

Callén, E., Casado, J. A., Tischkowitz, M. D., Bueren, J. A., Creus, A., Marcos, R. […] y Winter, J. de. (2005). A common founder mutation in FANCA underlies the world's highest prevalence of Fanconi anemia in Gypsy families from Spain. Blood, 105 (5), pp. 1946-1949. https://doi.org/10.1182/blood-2004-07-2588

Carrillo, J., Martínez, P., Solera, J., Moratilla, C., González, A., Manguán-García, C. […] y Escoda, L. (2012). High resolution melting analysis for the identification of novel mutations in DKC1 and TERT genes in patients with dyskeratosis congenita. Blood Cells, Molecules and Diseases, 49 (3-4), pp. 140-146. https://doi.org/10.1016/j.bcmd.2012.05.008 PMid:22664374

Castellà, M., Pujol, R., Callén, E., Ramírez, M. J., Casado, J. A., Talavera, M. […] y Cela, E. (2011a). Chromosome fragility in patients with Fanconi anaemia: diagnostic implications and clinical impact. Journal of Medical Genetics, 48 (4), pp. 242-250. https://doi.org/10.1136/jmg.2010.084210 PMid:21217111

Castellà, M., Pujol, R., Callén, E., Trujillo, J. P., Casado, J. A., Gille, H. [...] y Surrallés, J. (2011b). Origin, functional role and clinical impact of Fanconi anemia FANCA mutations. Blood, 117, 3759-3769. https://doi.org/10.1182/blood-2010-08-299917 PMid:21273304 PMCid:PMC3083295

Ceci, M., Gaviraghi, C., Gorrini, C., Sala, L. A., Offenhauser, N., Carlo Marchisio, P. y Biffo, S. (2003). Release of eIF6 (p27 BBP) from the 60S subunit allows 80S ribosome assembly. Nature, 426 (6966), pp. 579-584. https://doi.org/10.1038/nature02160 PMid:14654845

Dacie, S. J. (2001). The immune haemolytic anaemias: A century of exciting progress in understading. British Journal of Haematology, 114 (4), pp. 770-785. https://doi.org/10.1046/j.1365-2141.2001.02945.x

Dokal, I. y Vulliamy, T. (2008). Inherited aplastic anaemias/bone marrow failure syndromes. Blood Reviews, 22 (3), pp. 141-153. https://doi.org/10.1016/j.blre.2007.11.003 PMid:18164793

Dokal, I. y Vulliamy, T. (2010). Inherited bone marrow failure syndromes. Haematologica, 95 (8), 1236-1240. https://doi.org/10.3324/haematol.2010.025619 PMid:20675743 PMCid:PMC2913069

Dror, Y. (2011). Genetic Basis of Inherited Bone Marrow Failure Syndromes. En Ikehara, K. (ed.). Advances in the Study of Genetic Disorders, pp. 357-392. https://doi.org/10.5772/17388

Falco L. de, Sánchez M., Silvestri, L., Kannengiesser, C., Muckenthaler, M. U., Iolascon, A. [...] y Beaumont, C. (2013). Iron refractory iron deficiency anemia. Haematologica, 98 (6), pp. 845-853. https://doi.org/10.3324/haematol.2012.075515 PMid:23729726 PMCid:PMC3669438

Fernández García, M. S. y Teruya-Feldstein, J. (2014). The diagnosis and treatment of dyskeratosis congenita: a review. Journal of Blood Medicine, 5, pp. 157-167. PMid:25170286 PMCid:PMC4145822

Goobie, S., Popovic, M., Morrison, J., Ellis, L., Ginzberg, H., Boocock, G.R.B. […] y Hudson, T. J. (2001). Shwachman-Diamond Syndrome with Exocrine Pancreatic Dysfunction and Bone Marrow Failure Maps to the Centromeric Region of Chromosome 7. The American Journal of Human Genetics, 68 (4), pp. 1048-1054. https://doi.org/10.1086/319505 PMid:11254457 PMCid:PMC1275624

Iolascon, A., Heimpel, H., Wahlin, A. y Tamary, H. (2013). Congenital dyserythropoietic anemias: molecular insights and diagnostic approach. Blood, 122 (13), pp. 2162-2166. https://doi.org/10.1182/blood-2013-05-468223 PMid:23940284 PMCid:PMC3785118

Kedar, P. S., Colah, R. B., Kulkarni, S., Ghosh, K. y Mohanty, D. (2003). Experience with eosin-5'-maleimide as a diagnostic tool for red cell membrane cytoskeleton disorders. Clinical & Laboratory Haematology, 25 (6), 373-376. https://doi.org/10.1046/j.0141-9854.2003.00557.x

King, M. J. y Zanella, A. (2013). Hereditary red cell membrane disorders and laboratory diagnostic testing. International Journal of Laboratory Hematology, 35 (3), 237-243. https://doi.org/10.1111/ijlh.12070 PMid:23480868

Kutler, D. I., Singh, B., Satagopan, J., Batish, S. D., Berwick, M., Giampietro, P. F. […] y Auerbach, A. D. (2003). A 20- year perspective on the International Fanconi Anemia Registry (IFAR). Blood, 101 (4), pp. 1249-1256. https://doi.org/10.1182/blood-2002-07-2170

Landowski, M., O'Donohue, M. F., Buros, C., Ghazvinian, R., Montel-Lehry, N., Vlachos, A. […] y Gazda, H. T. (2013). Novel deletion of RPL15 identified by array-comparative genomic hybridization in Diamond- Blackfan anemia. Human Genetics, 132 (11), pp. 1265-1274. https://doi.org/10.1007/s00439-013-1326-z PMid:23812780 PMCid:PMC3797874

Luzzatto, L. y Seneca, E. (2014). G6PD deficiency: A classic example of pharmacogenetics with on-going clinical implications. British Journal of Haematology, 164 (4), pp. 469-480. https://doi.org/10.1111/bjh.12665 PMid:24372186 PMCid:PMC4153881

Mirabello, L., Macari, E. R., Jessop, L., Ellis, S. R., Myers, T., Giri, N. […] y Savage, S. A. (2014). Whole-exome sequencing and functional studies identify RPS29 as a novel gene mutated in multicase Diamond-Blackfan anemia families. Blood, 124, pp. 24-32. https://doi.org/10.1182/blood-2013-11-540278 PMid:24829207 PMCid:PMC4125351

Moore, J. B., Farrar, J. E., Arceci, R. J., Liu, J. M. y Ellis, S.R. (2009). Distinct ribosome maturation defects in yeast models of Diamond-Blackfan anemia and Shwachman-Diamond syndrome. Haematologica, 95, pp. 57-64. https://doi.org/10.3324/haematol.2009.012450 PMid:19713223 PMCid:PMC2805733

Narla, A. y Ebert, B. L. (2010). Ribosomopathies: human disorders of ribosome dysfunction. Blood, 115, pp. 3196-3205. https://doi.org/10.1182/blood-2009-10-178129 PMid:20194897 PMCid:PMC2858486

Neveling, K., Endt, D., Hoehn, H. y Schindler, D. (2009). Genotype-phenotype correlations in Fanconi anemia. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 668 (1), pp. 73-91. https://doi.org/10.1016/j.mrfmmm.2009.05.006 PMid:19464302

Noris, M. y Remuzzi, G. (2009). Atypical Hemolytic-Uremic Syndrome". New England Journal of Medicine, 361 (17), pp. 1676-1687. https://doi.org/10.1056/NEJMra0902814 PMid:19846853

Parker, C. J. (2012). Paroxysmal nocturnal hemoglobinuria. Current Opinion in Hematology, 19 (3), pp. 141-148. https://doi.org/10.1097/MOH.0b013e328351c348 PMid:22395662

Parrella, S., Aspesi, A., Quarello, P., Garelli, E., Pavesi, E., Carando, A. […] y Dianzani, I. (2014). Loss of GATA-1 full length as a cause of Diamond-Blackfan anemia phenotype. Pediatric Blood & Cancer, 61 (7), pp. 1319-1321. https://doi.org/10.1002/pbc.24944 PMid:24453067 PMCid:PMC4684094

Parry, E. M., Alder, J. K., Qi, X., Chen, J. J. y Armanios, M. (2011). Syndrome complex of bone marrow failure and pulmonary fibrosis predicts germline defects in telomerase. Blood, 117, pp. 5607-5611. https://doi.org/10.1182/blood-2010-11-322149 PMid:21436073 PMCid:PMC3110022

Pasricha, S.-R. (2014). Anemia: a comprehensive global estimate. Blood, 123 (5), pp. 611-612. https://doi.org/10.1182/blood-2013-12-543405

Rosenberg, P. S., Tamary, H. y Alter, B. P. (2011). How high are carrier frequencies of rare recessive syndromes? Contemporary estimates for Fanconi Anemia in the United States and Israel. American Journal of Medical Genetics Part A, 155 (8), pp. 1877-1883. https://doi.org/10.1002/ajmg.a.34087 PMid:21739583 PMCid:PMC3140593

Rothbaum, R., Perrault, J., Vlachos, A., Cipolli, M., Alter, B. P., Burroughs, S. […] y Rossi, T. (2002). Shwachman- Diamond syndrome: Report from an international conference. The Journal of Pediatrics, 141 (2), pp. 266-270. https://doi.org/10.1067/mpd.2002.125850 PMid:12183725

Ruggero, D. y Shimamura, A. (2014). Marrow failure: a window into ribosome biology. Blood, 124 (18), pp. 27-84-2792. https://doi.org/10.1182/blood-2014-04-526301 PMid:25237201 PMCid:PMC4215310

Sans-Sabrafen, J., Besses Raebel, C. y Vives Corrons, J. L. (2006). Hematología clínica (5.ª ed.). Elsevier.

Savage, S. A. (2013). Dyskeratosis Congenita. GeneReviews. [En línea]. Disponible en http://www.ncbi.nlm.nih. gov/books/NBK22301/

Shimamura, A. y Alter, B. P. (2010). Pathophysiology and management of inherited bone marrow failure syndromes. Blood Reviews, 24 (3), pp. 101-122. https://doi.org/10.1016/j.blre.2010.03.002 PMid:20417588 PMCid:PMC3733544

Tolar, J., Adair, J. E., Antoniou, M., Bartholomae, C. C., Becker, P. S., Blazar, B. R. […] y Thrasher, A. J. (2011). Stem Cell Gene Therapy for Fanconi Anemia: Report from the 1st International Fanconi Anemia Gene Therapy Working Group Meeting. Molecular Therapy, 19 (7), pp. 1193-1198. https://doi.org/10.1038/mt.2011.78 PMid:21540837 PMCid:PMC3129570

Tremblay, J. P., Xiao, X., Aartsma-Rus, A., Barbas, C., Blau, H. M., Bogdanove, A. J. […] y Gao, G. (2013). Translating the Genomics Revolution: The Need for an International Gene Therapy Consortium for Monogenic Diseases. Molecular Therapy, 21 (2), pp. 266-268. https://doi.org/10.1038/mt.2013.4 PMid:23369965 PMCid:PMC3594019

Tsangaris, E., Klaassen, R., Fernández, C. V., Yanofsky, R., Shereck, E., Champagne, J. […] y Dror, Y. (2011). Genetic analysis of inherited bone marrow failure syndromes from one prospective, comprehensive and population-based cohort and identification of novel mutations. Journal of Medical Genetics, 48 (9), pp. 618-628. https://doi.org/10.1136/jmg.2011.089821 PMid:21659346

Verlinsky, Y., Rechitsky, S., Schoolcraft, W., Strom, C. y Kuliev, A. (2001). Preimplantation diagnosis for Fanconi anemia combined with HLA matching. JAMA, 285 (24), pp. 3130-3133. https://doi.org/10.1001/jama.285.24.3130

Vives Corrons, J. L. (2013). Why ENERCA? European Network for Rare and Congenital Anaemias. Genome Research & Society, 10, pp. 33-37.

Vives Corrons, J. L. y Aguilar i Bascompte, J. L. (2014). Manual de técnicas de laboratorio en hematología (4.ª ed.). Elsevier.

Vlachos, A., Rosenberg, P. S., Atsidaftos, E., Alter, B. P. y Lipton, J. M. (2012). The incidence of neoplasia in Diamond-Blackfan anemia: a report from the Diamond-Blackfan Anemia Registry. Blood, 119 (16), pp. 3815-3819. https://doi.org/10.1182/blood-2011-08-375972 PMid:22362038 PMCid:PMC3335385

Vulliamy, T., Marrone, A., Szydlo, R., Walne, A., Mason, P. J. y Dokal, I. (2004). Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nature Genetics, 36 (5), pp. 447-449. https://doi.org/10.1038/ng1346 PMid:15098033

Walne, A. J., Vulliamy, T., Kirwan, M., Plagnol, V. y Dokal, I. (2013). Constitutional mutations in RTEL1 cause severe dyskeratosis congenita. The American Journal of Human Genetics, 92 (3), pp. 448-453. https://doi.org/10.1016/j.ajhg.2013.02.001 PMid:23453664 PMCid:PMC3591859

Wegman-Ostrosky, T. y Savage, S. A. (2017). The genomics of inherited bone marrow failure: from mechanism to the clinic. British Journal of Haematology, 177 (4), pp. 526-542. https://doi.org/10.1111/bjh.14535 PMid:28211564

World Health Organization (2011). Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Vitamin and Mineral Nutrition Information System. [En línea]. Disponible en http://www.who.int/ vmnis/indicators/haemoglobin.pdf

Zanella, A., Fermo, E., Bianchi, P. y Valentini, G. (2005). Red cell pyruvate kinase deficiency: molecular and clinical aspects. British Journal of Haematology, 130 (1), pp. 11-25. https://doi.org/10.1111/j.1365-2141.2005.05527.x PMid:15982340




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista arbor@csic.es

Soporte técnico soporte.tecnico.revistas@csic.es