Arbor, Vol 195, No 792 (2019)

La investigación con células troncales y la creatividad científica


https://doi.org/10.3989/arbor.2019.792n2006

Natalia López Moratalla
Universidad de Navarra, España
orcid http://orcid.org/0000-0001-6979-5292

Resumen


La descripción del itinerario investigador de la biología de las células troncales permite una reflexión sobre la racionalidad de la creatividad científica. En 1998 aparecieron las células troncales procedentes de embriones humanos. Inmediatamente llegaron, motivadas por razones ideológicas, políticas y económicas, las especulaciones sobre sus posibilidades terapéuticas. Pero las dificultades para su uso médico resultaron insuperables. En 2007 aparecieron las células troncales humanas de pluripotencialidad inducida (iPS). Esta trayectoria investigadora revela aspectos claves del pensamiento creativo en ciencia: a) La importancia de la motivación ética para encontrar un punto de partida no destructivo que marca la racionalidad del camino: los procesos fisiológicos ocurren en la unidad de un organismo vivo. b) La necesidad de un conocimiento profundo de la experiencia científica acumulada para escoger la vía más natural. c) La visión de futuro que agota las posibilidades que ofrecen las pruebas en animales, y que encuentra aplicaciones útiles a los conocimientos que se van obteniendo. d) La imprescindible responsabilidad sobre las consecuencias.

Palabras clave


Células troncales embrionarias; células troncales de pluripotencialidad inducida; terapia celular; transferencia nuclear; clonación terapéutica; racionalidad científica y ética; pensamiento creativo

Texto completo:


HTML PDF XML

Referencias


Aiba, K., Nedorezov, T., Piao, Y., Nishiyama, A., Matoba, R., Sharova, L. V. […] y Ko, M. S. (2009). Defining Developmental Potency and Cell Lineage Trajectories by Expression Profiling of Differentiating Mouse Embryonic Stem Cells. DNA Research, 16 (1), pp. 73-80. https://doi.org/10.1093/dnares/dsn035 PMid:19112179 PMCid:PMC2644347

Beaty R. E., Benedek, M., Silvia, P. J. y Schacter D. L. (2016). Creative Cognition and Brain Network Dynamics. Trends in Cognitive Sciences, 20 (2), pp. 87-95. https://doi.org/10.1016/j.tics.2015.10.004 PMid:26553223 PMCid:PMC4724474

Cyranoski, D. (2012). Stem-cell pioneer banks on future therapies. Nature News, 488 (7410), 139. https://doi.org/10.1038/488139a PMid:22874941

Daley, G. (2010). Stem cells: roadmap to the clinic. The Journal of Clinical Investigation, 120 (1), pp. 8-10. https://doi.org/10.1172/JCI41801 PMid:20051631 PMCid:PMC2798707

Ebert, A. D., Yu, J., Rose, F. F., Mattis, V. B., Lorson, C. L., Thomson, J. A. Y Svendsen, C. N. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457 (7227), pp. 51-61. https://doi.org/10.1038/nature07677 PMid:19098894 PMCid:PMC2659408

Gurdon, J. B. (1962). The transplantation of nuclei between two species of Xenopus. Developmental Biology, 5 (1), pp. 68-83. https://doi.org/10.1016/0012-1606(62)90004-0

Gurdon, J., Byrne, J. A. y Simonsson, S. (2003). Nuclear reprogramming and stem cell creation. Proceedings of the National Academy of Sciences, 100 (suppl. 1), pp. 11819- 11822. https://doi.org/10.1073/pnas.1834207100 PMid:12920185 PMCid:PMC304092

Hanna, J., Wernig, M., Markoulaki, S., Sun, C.W., Meissner, A., Cassady, J. P. […] Jaenisch, R. (2007). Treatment of Sickle Cell Anemia Mouse Model with iPS Cells Generated from Autologous Skin. Science, 318 (5858), pp. 1920- 1923. https://doi.org/10.1126/science.1152092 PMid:18063756

Hayashi, Y., Saitou, M. y Yamanaka, S. (2012). Germline development from human pluripotent stem cells toward disease modeling of infertility. Fertility and Sterility, 97 (6), pp. 1250- 1259. https://doi.org/10.1016/j.fertnstert.2012.04.037 PMid:22656305

Herranz, G. (2013). The timing of monozygotic twinning: a criticism of the common model. Zygote, 21 (3), pp. 1-14. https://doi.org/10.1017/S0967199413000257 PMid:23735171

Inagawa, K., Miyamoto, K., Yamakawa, H., Muraoka, N., Sadahiro T, Umei, T. […] y Kurihara, C. (2012). Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5. Circulation Research, 111 (9), pp. 1147-1156. https://doi.org/10.1161/CIRCRESAHA.112.271148 PMid:22931955

Isner, J. M., Pieczek, A., Schainfeld, R., Blair, R., Haley, L. Asahara, T. […] Symes, J. F. (1996). Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. The Lancet, 348 (9024), pp. 370- 374. https://doi.org/10.1016/S0140-6736(96)03361-2

Jessup, M., Greenberg, B., Mancini, D., Cappola, T., Pauly, D. F., Jaski, B. [...] y Hajjar, R. J. (2011). Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID). A Phase 2 Trial of Intracoronary Gene Therapy of Sarcoplasmic Reticulum Ca2+-ATPase in Patients with Advanced Heart Failure. Circulation, 124 (3), pp. 304-313. https://doi.org/10.1161/CIRCULATIONAHA.111.022889 PMid:21709064 PMCid:PMC5843948

Junying, Y., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S. [...] y Thomson, J. A. (2007). Induced Pluripotent Stem Cell Lines Derived from Somatic Cells. Science, 318 (5858), pp. 1917-1920. https://doi.org/10.1126/science.1151526 PMid:18029452

Kawakami, M., Sipp, D. y Kato, K. (2010). Regulatory Impacts on Stem Cell Research in Japan. Cell Stem Cell, 6 (5), pp. 415-418. https://doi.org/10.1016/j.stem.2010.04.010 PMid:20452315

López Moratalla, N. (2004). Uso terapéutico con células troncales humanas: racionalidad científica. Cuadernos de Bioética, 53, pp. 77-97.

López Moratalla, N. (2005). El lobby de las células embrionarias. Telón de fondo del fraude de la clonación. Cuadernos de Bioética, 58, pp. 419-439.

López Moratalla, N. (2007). Células troncales rejuvenecidas y el final de la clonación. Cuadernos de Bioética, 64, pp. 387-392.

López Moratalla, N. (2009). ¿Resucitan al inicio del 2009 las células troncales procedentes de embriones? Cuadernos de Bioética, 70, pp. 471-486.

Losordo, D. W., Vale, P. R., Symes, J. F., Dunnington, C. H., Esakof, D. D., Maysky, M. […] e Isner, J. M. (1998). Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation, 98 (25), pp. 2800-2804. https://doi.org/10.1161/01.CIR.98.25.2800 PMid:9860779

Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A. […] y Daley, G. Q. (2008). Disease-Specific Induced Pluripotent Stem Cells. Cell, 134 (5), pp. 877-886. https://doi.org/10.1016/j.cell.2008.07.041 PMid:18691744 PMCid:PMC2633781

Pera, M. F. (2011). Stem cells: The dark side of induced pluripotency. Nature, 471 (7336), pp. 46-47. https://doi.org/10.1038/471046a PMid:21368819

Petryna, A. (2011). The Competitive Logic of Global Clinical Trials. Social Research. An International Quarterly, 78 (3), pp. 949-974.

Philonenko, E. S., Shutova, M. V., Chestkov, l. V., Lagarkova, M. A. y Kiselev, S. L. (2011). Current Progress and Potential Practical Application for Human Pluripotent Stem Cells. International Review of Cell and Molecular Biology, 292, pp. 153-196. https://doi.org/10.1016/B978-0-12-386033-0.00004-9 PMid:22078961

Qian, L., Huang, Y., Spencer, C. I., Foley, A., Vedantham, V., Liu, L. […] y Srivastava. D. (2012). In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature, 485 (7400), pp. 593-598. https://doi.org/10.1038/nature11044 PMid:22522929 PMCid:PMC3369107

Rugg-Gunn, P. J., Ferguson-Smith, A. C. y Pedersen, R. A. (2007). Status of genomic imprinting in human embryonic stem cells as revealed by a large cohort of independently derived and maintained lines. Human Molecular Genetics, 16 (R2), pp. R243-R251. https://doi.org/10.1093/hmg/ddm245 PMid:17911167

Sadahiro, T., Yamanaka, S. y Ieda, M. (2015). Direct Cardiac Reprogramming: Progress and Challenges in Basic Biology and Clinical Applications. Circulation Research, 116 (8), pp. 1378-1391. https://doi.org/10.1161/CIRCRESAHA.116.305374 PMid:25858064

Schwartz, S. D., Regillo, C. D., Lam, B. L., Eliott, D., Rosenfeld, P. J., Gregori, N. Z. […] Maguire, J. (2014). Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. The Lancet, 385 (9967), pp. 509- 516. https://doi.org/10.1016/S0140-6736(14)61376-3

Sims, R. J. y Reinberg, D. (2009). Stem cells: Escaping fates with open states. Nature, 460 (7257), pp. 802-803. https://doi.org/10.1038/460802a PMid:19675633

Tachibana, M., Amato, P., Sparman, M., Gutierrez, N. M., Tippner-Hedges, R., Ma, H. […] y Masterson, K. (2013). Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer. Cell, 153 (6), pp. 1228-1238. https://doi.org/10.1016/j.cell.2013.05.006 PMid:23683578 PMCid:PMC3772789

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. y Yamanaka, S. (2007). Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 131 (5), pp. 861-872. https://doi.org/10.1016/j.cell.2007.11.019 PMid:18035408

Takahashi, K. y Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126 (4), pp. 663-676. https://doi.org/10.1016/j.cell.2006.07.024 PMid:16904174

Taura, D., Noguchi, M., Sone, M., Hosoda, K., Mori, E., Okada, Y. [...] y Sonoyama, T. (2009). Adipogenic differentiation of human induced pluripotent stem cells: Comparison with that of human embryonic stem cells. FEBS Letters, 583 (6), pp. 1029-1033. https://doi.org/10.1016/j.febslet.2009.02.031 PMid:19250937

Yamanaka, S. (2009a). A Fresh Look at iPS Cells. Cell, 137 (1), pp. 13-17. https://doi.org/10.1016/j.cell.2009.03.034 PMid:19345179

Yamanaka, S. (2009b). Elite and stochastic models for induced pluripotent stem cell generation. Nature, 460 (7251), pp. 49- 52. https://doi.org/10.1038/nature08180 PMid:19571877

Yamanaka, S. (2010). Patient-Specific Pluripotent Stem Cells Become Even More Accessible. Cell Stem Cell, 7 (1), pp. 1-2. https://doi.org/10.1016/j.stem.2010.06.009 PMid:20621038

Yamanaka, S. y Blau, H. M. (2010). Nuclear reprogramming to a pluripotent state by three approaches. Nature, 465 (7299), pp. 704-712. https://doi.org/10.1038/nature09229 PMid:20535199 PMCid:PMC2901154

Yoshida, Y. y Yamanaka, S. (2012). An Emerging Strategy of Gene Therapy for Cardiac Disease. Circulation Research, 111 (9), pp. 1108-1110. https://doi.org/10.1161/CIRCRESAHA.112.278820 PMid:23065338

Zacharias, D. G., Nelson, T. J., Mueller, P. S. y Hook, C. (2011). The science and ethics of induced pluripotency: what will become of enbryonic stem cells? Mayo Clinic Proceedings, 86 (7), pp. 634-640. https://doi.org/10.4065/mcp.2011.0054 PMid:21719620 PMCid:PMC3127559

Zhang, J., Wilson, G. F., Soerens, A. G., Koonce, C. H., Yu, J., Palecek, S. P. […] y Kamp, T. J. (2009). Functional Cardiomyocytes Derived From Human Induced Pluripotent Stem Cells. Circulation Research, 104 (4), pp. e30-e41. https://doi.org/10.1161/CIRCRESAHA.108.192237 PMid:19213953 PMCid:PMC2741334

Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. y Melton, D. A. (2008). In vivo reprogramming of adult pancreatic exocrine cells to ?-cells. Nature, 455 (7213), pp. 637-632. https://doi.org/10.1038/nature07314 PMid:18754011




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista arbor@csic.es

Soporte técnico soporte.tecnico.revistas@csic.es