Biopelículas y persistencia microbiana en la industria alimentaria

Autores/as

DOI:

https://doi.org/10.3989/arbor.2020.795n1002

Palabras clave:

biofilms, persistencia, ecología microbiana, control, procesado de alimentos

Resumen


Este artículo de revisión examina la importancia que tienen las comunidades microbianas que colonizan los ambien­tes y equipos de procesado de alimentos formando biopelículas o biofilms en la persistencia microbiana en la industria alimen­taria y consecuentemente, en la seguridad y la calidad de los alimentos. La atención se centra especialmente en biopelículas formadas por microorganismos no deseados, es decir, microor­ganismos alterantes y patógenos. Se presenta información so­bre la variabilidad intraespecífica en la formación, la ecología y la arquitectura de las biopelículas, y los factores que influyen en su formación. Asimismo, se resume la información disponible sobre nuevos agentes o estrategias para el control de la forma­ción o eliminación de biopelículas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Al-Seraih, A., Belguesmia, Y., Baah, J., Szunerits, S., Boukherroub, R. y Drider, D. (2017). Enterocin B3A-B3B produced by LAB collected from infant faeces: potential utilization in the food indus­try for Listeria monocytogenes biofilm management. Antonie van Leeuwen­hoek. International Journal of General and Molecular Microbiology, 110 (2), pp. 205-219. https://doi.org/10.1007/s10482-016-0791-5 PMid:27878401

Álvarez-Ordóñez, A., Alvseike, O., Omer, M. K ., Heir, E., Axelsson, L., Holck, A. y Prieto, M. (2013). Heterogeneity in resistance to food-related stresses and biofilm formation ability among verocytotoxigenic Escherichia coli strains. International Journal of Food Microbiology, 161 (3), pp. 220-230. https://doi.org/10.1016/j.ijfoodmicro.2012.12.008 PMid:23337122

Araújo, P. A., Machado, I., Meireles, A., Leiknes, T. O., Mergulhão, F., Melo, L. F. y Simões, M. (2017). Combination of se­lected enzymes with cetyltrimethylam­monium bromide in biofilm inactivation, removal and regrowth. Food Research International, 95, pp. 101-107. https://doi.org/10.1016/j.foodres.2017.02.016 PMid:28395817

Ashraf, M. A., Ullah, S., Ahmad, I., Qureshi, A. K., Balkhair, K. S. y Abdur Rehman, M. (2014). Green biocides, a promising technology: Current and future applica­tions to industry and industrial process­es. Journal of the Science of Food and Agriculture, 94 (3), pp. 388-403. https://doi.org/10.1002/jsfa.6371 PMid:23983055

Axelson, L., Holck, A., Rud, I., Samah, D., Tierce, P., Favre, M. y Kure, C. F. (2013). Cleaning of conveyor belt ma­terials using ultrasound in a thin layer of water. Journal of Food Protection, 76 (8), pp. 1401-1407. https://doi.org/10.4315/0362-028X.JFP-12-563 PMid:23905796

Bas, S., Kramer, M. y Stopar, D. (2017). Bio­film surface density determines biocide effectiveness. Frontiers in Microbiol­ogy, 8, 2443. https://doi.org/10.3389/fmicb.2017.02443 PMid:29276508 PMCid:PMC5727120

Bassi, D., Cappa, F., Gazzola, S., Orrù, L. y Cocconcelli, P. S. (2017). Biofilm forma­tion on stainless steel by Streptococcus thermophilus UC8547 in milk environ­ments is mediated by the proteinase PrtS. Applied and Environmental Micro­biology, 83 (8), e02840-16. https://doi.org/10.1128/AEM.02840-16 PMid:28159787 PMCid:PMC5377502

Benítez-Páez, A. y Sanz, Y. (2017). Multi-locus and long amplicon sequencing approach to study microbial diversity at species level using the MinIONTM por­table nanopore sequencer. GigaScience, 6 (7), pp. 1-12. https://doi.org/10.1093/gigascience/gix043 PMid:28605506 PMCid:PMC5534310

Berlanga, M. y Guerrero, R. (2016). Living together in biofilms: The microbial cell factory and its biotechnological implica­tions. Microbial Cell Factories, 15, 165. https://doi.org/10.1186/s12934-016-0569-5 PMid:27716327 PMCid:PMC5045575

Bolocan, A. S., Pennone, V., O'Connor, P. M., Coffey, A., Nicolau, A. I., McAuliffe, O. y Jordan, K. (2017). Inhibition of Listeria monocytogenes biofilms by bacterio­cin-producing bacteria isolated from mushroom substrate. Journal of Applied Microbiology, 122 (1), pp. 279-293. https://doi.org/10.1111/jam.13337 PMid:27797439

Bridier, A., Sanchez-Vizuete, P., Guilbaud, M., Piard, J. C., Naïtali, M. y Briandet, R. (2015). Biofilm-associated persistence of food-borne pathogens. Food Micro­biology, 45 (Pt B), pp. 167-178. https://doi.org/10.1016/j.fm.2014.04.015 PMid:25500382

Brown, H. L., Hanman, K., Reuter, M., Betts, R. P. y Vliet, A. H. M. van (2015). Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment. Frontiers in Microbi­ology, 6, 699. https://doi.org/10.3389/fmicb.2015.00699 PMid:26217328 PMCid:PMC4498105

Brown, H. L., Reuter, M., Salt, L. J., Cross, K. L., Betts, R. P. y Vliet, A. H. M. (2014). Chicken juice enhances surface attach­ment and biofilm formation of Campylo­bacter jejuni. Applied and Environmental Microbiology, 80 (22), pp. 7053-7060. https://doi.org/10.1128/AEM.02614-14 PMid:25192991 PMCid:PMC4249011

Buzón-Durán, L., Alonso-Calleja, C., Riesco- Peláez, F. y Capita, R. (2017). Effect of sub­inhibitory concentrations of biocides on the architecture and viability of MRSA bio­films. Food Microbiology, 65, pp. 294-301. https://doi.org/10.1016/j.fm.2017.01.003 PMid:28400016

Caballero Gómez, N., Abriouel, H., Gran­de, M. J., Pérez Pulido, R. y Gálvez, A. (2013). Combined treatments of en­terocin AS-48 with biocides to improve the inactivation of methicillin-sensitive and methicillin-resistant Staphylococ­cus aureus planktonic and sessile cells. International Journal of Food Microbiol­ogy, 163 (2-3), pp. 96-100. https://doi.org/10.1016/j.ijfoodmicro.2013.02.018 PMid:23558192

Capita, R., Buzón-Durán, L., Riesco-Peláez, F. y Alonso-Calleja, C. (2017). Effect of sub-lethal concentrations of biocides on the structural parameters and vi­ability of the biofilms formed by Salmo­nella Typhimurium. Foodborne Patho­gens and Disease, 14 (6), pp. 350-356. https://doi.org/10.1089/fpd.2016.2241 PMid:28605289

Chaitiemwong, N., Hazeleger, W. C. y Beum­er, R. R. (2014). Inactivation of Listeria monocytogenes by disinfectants and bac­teriophages in suspension and stainless steel carrier tests. Journal of Food Protec­tion, 77 (12), pp. 2012-2020. https://doi.org/10.4315/0362-028X.JFP-14-151 PMid:25474045

Chen, C. Y., Hofmann, C. S., Cottrell, B. J., Strobaugh, T. P., Paoli, G. C., Nguyen, L. H., Yan, X. y Uhlich, G. A. (2013). Phenotypic and genotypic characterization of biofilm forming capabilities in non-O157 Shiga toxin-producing Escherichia coli strains. PLoS ONE, 8 (12), e84863 https://doi.org/10.1371/journal.pone.0084863 PMid:24386426 PMCid:PMC3874044

Cherifi, T., Jacques, M., Quessy, S. y Fra­valo, P. (2017). Impact of nutrient re­striction on the structure of Listeria monocytogenes biofilm grown in a mi­crofluidic system. Frontiers in Microbi­ology 8, 864. https://doi.org/10.3389/fmicb.2017.00864 PMid:28567031 PMCid:PMC5434154

Chopra, L., Singh, G., Kumar Jena, K. y Sa­hoo, D. K. (2015). Sonorensin: A new bacteriocin with potential of an anti-biofilm agent and a food biopreser­vative. Scientific Reports, 5, 13412. https://doi.org/10.1038/srep13412 PMid:26292786 PMCid:PMC4544038

Chylkova, T., Cadena, M., Ferreiro, A. y Pi­tesky, M. (2017). Susceptibility of Sal­monella biofilm and planktonic bacteria to common disinfectant agents used in poultry processing. Journal of Food Pro­tection, 80 (7), pp. 1072-1079. https://doi.org/10.4315/0362-028X.JFP-16-393 PMid:28561639

Coronel-León, J., Marqués, A. M., Basti­da, J. y Manresa, A. (2016). Optimizing the production of the biosurfactant li­chenysin and its application in biofilm control. Journal of Applied Microbiol­ogy, 120 (1), pp. 99-111. https://doi.org/10.1111/jam.12992 PMid:26519210

Cossu, A., Si, Y., Sun, G. y Nitin, N. (2017). Antibiofilm effect of poly(vinyl alcohol-coethylene) halamine film against Listeria innocua and Escherichia coli O157:H7. Applied and Environmen­tal Microbiology, 83 (19), e00975-17. https://doi.org/10.1128/AEM.00975-17 PMid:28802271 PMCid:PMC5601348

Coughlan, L. M., Cotter, P. D., Hill, C. y Al­varez-Ordóñez, A. (2016). New weap­ons to fight old enemies: Novel strate­gies for the (bio)control of bacterial biofilms in the food industry. Frontiers in Microbiology, 7, 1641. https://doi.org/10.3389/fmicb.2016.01641 PMid:27803696 PMCid:PMC5067414

Daneshvar Alavi, H. E. y Truelstrup Hansen, L. (2013). Kinetics of biofilm forma­tion and desiccation survival of Listeria monocytogenes in single and dual spe­cies biofilms with Pseudomonas fluore­scens, Serratia proteamaculans or She­wanella baltica on food-grade stainless steel surfaces. Biofouling, 29 (10), pp. 1253-1268. https://doi.org/10.1080/08927014.2013.835805 PMid:24102145

Dhowlaghar, N., De Abrew Abeysundara, P., Nannapaneni, R., Schilling, M. W., Chang, S., Cheng, W. H. y Sharma, C. S. (2018). Biofilm formation by Salmo­nella spp. in catfish mucus extract un­der industrial conditions. Food Micro­biology, 70, pp. 172-180. https://doi.org/10.1016/j.fm.2017.09.016 PMid:29173625

Dimakopoulou-Papazoglou, D., Lianou, A. y Koutsoumanis, K. P. (2016). Model­ling biofilm formation of Salmonella enterica ser. Newport as a function of pH and water activity. Food Microbiol­ogy, 53 (Pt B), pp. 76-81. https://doi.org/10.1016/j.fm.2015.09.002 PMid:26678133

Duanis-Assaf, D., Steinberg, D., Chai, Y. y Shemesh, M. (2016). The LuxS based quorum sensing governs lactose in­duced biofilm formation by Bacillus subtilis. Frontiers in Microbiology, 6, 1517. https://doi.org/10.3389/fmicb.2015.01517 PMid:26779171 PMCid:PMC4705240

Endersen, L., Buttimer, C., Nevin, E., Coffey, A., Neve, H., Oliveira, H., Lavigne, R. y O'Mahony, J. (2017). Investigating the biocontrol and anti-biofilm potential of a three phage cocktail against Cronobacter sakazakii in different brands of infant formula. International Journal of Food Microbiology, 253, pp. 1-11. https://doi.org/10.1016/j.ijfoodmicro.2017.04.009 PMid:28460269

Fagerlund, A., Langsrud, S., Heir, E., Mik­kelsen, M. I. y Møretrø, T. (2016). Biofilm matrix composition affects the susceptibility of food associated staphylococci to cleaning and disin­fection agents. Frontiers in Microbiol­ogy, 7, 856. https://doi.org/10.3389/fmicb.2016.00856 PMid:27375578 PMCid:PMC4893552

Faille, C., Bénézech, T., Midelet-Bourdin, G., Lequette, Y., Clarisse, M., Ronse, G., Ronse, A. y Slomianny, C. (2014). Sporu­lation of Bacillus spp. within biofilms: A potential source of contamination in food processing environments. Food Microbiology, 40, pp. 64-74. https://doi.org/10.1016/j.fm.2013.12.004 PMid:24549199

Feng, G., Cheng, Y., Wang, S. Y., Hsu, L. C., Fe­liz, Y., Borca-Tasciuc, D. A., Worobo, R. W. y Moraru, C. I. (2014). Alumina surfaces with nanoscale topography reduce at­tachment and biofilm formation by Esch­erichia coli and Listeria spp. Biofouling, 30 (10), pp. 1253-1268. https://doi.org/10.1080/08927014.2014.976561 PMid:25427545

Fialho, J. F. Q., Naves, E. A. A., Bernar­des, P. C., Ferreira, D. C., Anjos, L. D. dos, Gelamo, R. V., Sá, J. P. N. de y Andrade, N. J. de (2018). Stainless steel and polyethylene surfaces func­tionalized with silver nanoparticles. Food Science and Technology Interna­tional, 24 (1), pp. 87-94. https://doi.org/10.1177/1082013217731414 PMid:28929793

Field, D., O'Connor, R., Cotter, P. D., Ross, R. P. y Hill, C. (2016). In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms. Frontiers in Microbiology, 7, 508. https://doi.org/10.3389/fmicb.2016.00508 PMid:27148197 PMCid:PMC4834297

Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A. y Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews Microbi­ology, 14 (9), pp. 563-575. https://doi.org/10.1038/nrmicro.2016.94 PMid:27510863

Gaglio, R., Cruciata, M., Gerlando, R. di, Scatassa, M. L., Cardamone, C., Man­cuso, I., Sardina, M. T., Moschetti, G., Portolano, B. y Settanni, L. (2016). Mi­crobial activation of wooden vats used for traditional cheese production and evolution of neoformed biofilms. Ap­plied and Environmental Microbiol­ogy, 82 (2), pp. 585-595. https://doi.org/10.1128/AEM.02868-15 PMid:26546430 PMCid:PMC4711119

Gião, M. S. y Keevil, C. W. (2014). Listeria monocytogenes can form biofilms in tap water and enter into the viable but non-cultivable state. Microbial Ecol­ogy, 67 (3), pp. 603-611. https://doi.org/10.1007/s00248-013-0364-3 PMid:24452996

Giaouris, E., Chorianopoulos, N., Doulgera­ki, A. y Nychas, G. J. (2013). Co-Culture with Listeria monocytogenes within a dual-species biofilm community strong­ly increases resistance of Pseudomo­nas putida to benzalkonium chloride. PLoS ONE, 8 (10), e77276. https://doi.org/10.1371/journal.pone.0077276 PMid:24130873 PMCid:PMC3795059

Giaouris, E., Heir, E., Desvaux, M., Hé­braud, M., Møretrø, T., Langsrud, S., Doulgeraki, A., Nychas, G. J., Kačániová, M., Czaczyk, K., Ölmez, H. y Simões, M. (2015). Intra- and inter-species interac­tions within biofilms of important food­borne bacterial pathogens. Frontiers in Microbiology, 6, 841. https://doi.org/10.3389/fmicb.2015.00841 PMid:26347727 PMCid:PMC4542319

Gingichashvili, S., Duanis-Assaf, D., Shem­esh, M., Featherstone, J. D. B., Feuer­stein, O. y Steinberg, D. (2017). Bacil­lus subtilis biofilm development - a computerized study of morphology and kinetics. Frontiers in Microbiolo­gy, 8, 2072. https://doi.org/10.3389/fmicb.2017.02072 PMid:29163384 PMCid:PMC5674941

Gkana, E. N., Doulgeraki, A. I., Chori­anopoulos, N. G. y Nychas, G. J. E. (2017). Anti-adhesion and anti-biofilm potential of organosilane nanoparticles against foodborne pathogens. Frontiers in Microbiology, 8, 1295. https://doi.org/10.3389/fmicb.2017.01295 PMid:28744277 PMCid:PMC5504163

Gomes, L. C., Deschamps, J., Briandet, R. y Mergulhão, F. J. (2018). Impact of modi­fied diamond-like carbon coatings on the spatial organization and disinfection of mixed-biofilms composed of Escherichia coli and Pantoea agglomerans industrial isolates. International Journal of Food Microbiology, 277, pp. 74-82. https://doi.org/10.1016/j.ijfoodmicro.2018.04.017 PMid:29689455

González, S., Fernández, L., Campelo, A. B., Gutiérrez, D., Martínez, B., Rodríguez, A. y García, P. (2017). The behavior of Staphylococcus aureus dual-species bio­films treated with bacteriophage phiIP­LA-RODI depends on the accompanying microorganism. Applied and Environ­mental Microbiology, 83 (3), e02821-16. https://doi.org/10.1128/AEM.02821-16 PMid:27836851 PMCid:PMC5244312

Gutiérrez, D., Rodríguez-Rubio, L., Martí­nez, B., Rodríguez, A. y García, P. (2016). Bacteriophages as weapons against bac­terial biofilms in the food industry. Fron­tiers in Microbiology, 7, 825. https://doi.org/10.3389/fmicb.2016.00825

Gutiérrez, D., Ruas-Madiedo, P., Martínez, B., Rodríguez, A. y García, P. (2014). Effective removal of Staphylococ­cal biofilms by the endolysin LysH5. PLoS ONE, 9 (9), e107307. https://doi.org/10.1371/journal.pone.0107307 PMid:25203125 PMCid:PMC4159335

Han, Q., Song, X., Zhang, Z., Fu, J., Wang, X., Malakar, P. K. Liu, H., Pan, Y. y Zhao, Y. (2017). Removal of foodborne patho­gen biofilms by acidic electrolyzed water. Frontiers in Microbiology, 8, 988. https://doi.org/10.3389/fmicb.2017.00988 PMid:28638370 PMCid:PMC5461821

Hayrapetyan, H., Muller, L., Tempelaars, M., Abee, T. y Nierop Groot, M. (2015). Comparative analysis of biofilm forma­tion by Bacillus cereus reference strains and undomesticated food isolates and the effect of free iron. International Journal of Food Microbiology, 200, pp. 72-79. https://doi.org/10.1016/j.ijfoodmicro.2015.02.005 PMid:25700364

Heir, E., Møretrø, T., Simensen, A. y Langs­rud, S. (2018). Listeria monocytogenes strains show large variations in com­petitive growth in mixed culture bio­films and suspensions with bacteria from food processing environments. International Journal of Food Micro­biology, 275, pp. 46-55. https://doi.org/10.1016/j.ijfoodmicro.2018.03.026 PMid:29631210

Herschend, J., Damholt, Z. B. V., Marquard, A. M., Svensson, B., Sørensen, S. J., Häg­glund, P. y Burmølle, M. (2017). A meta-proteomics approach to study the inter­species interactions affecting microbial biofilm development in a model com­munity. Scientific Reports, 7 (1), 16483. https://doi.org/10.1038/s41598-017-16633-6 PMid:29184101 PMCid:PMC5705676

Hsu, L. C., Fang, J., Borca-Tasciuc, D. A., Worobo, R. W. y Moraru, C. I. (2013). Effect of micro- and nanoscale topogra­phy on the adhesion of bacterial cells to solid surfaces. Applied and Environmen­tal Microbiology, 79 (8), pp. 2703-2712. https://doi.org/10.1128/AEM.03436-12 PMid:23416997 PMCid:PMC3623177

Huang, K., Chen, J., Nugen, S. R. y God­dard, J. M. (2016). Hybrid antifouling and antimicrobial coatings prepared by electroless co-deposition of fluo­ropolymer and cationic silica nanopar­ticles on stainless steel: efficacy against Listeria monocytogenes. ACS Applied Materials and Interfaces, 8 (25), pp. 15926-15936. https://doi.org/10.1021/acsami.6b04187 PMid:27268033

Hussain, M. S., Kwon, M., Tango, C. N. y Oh, D. H. (2018). Effect of electrolyzed water on the disinfection of Bacillus cereus biofilms: the mechanism of en­hanced resistance of sessile cells in the biofilm matrix. Journal of Food Protec­tion, 81 (5), pp. 860-869. https://doi.org/10.4315/0362-028X.JFP-17-450 PMid:29667430

Hüwe, C., Schmeichel, J., Brodkorb, F., Dohlen, S., Kalbfleisch, K., Kreyen­schmidt, M., Lorenz, R. y Kreyen­schmidt, J. (2018). Potential of antimi­crobial treatment of linear low-density polyethylene with poly((tert-butyl-amino)-methyl-styrene) to reduce bio­film formation in the food industry. Bio­fouling, 34 (4), pp. 378-387. https://doi.org/10.1080/08927014.2018.1453926 PMid:29663827

Iliadis, I., Daskalopoulou, A., Simões, M. y Giaouris, E. (2018). Integrated com­bined effects of temperature, pH and sodium chloride concentration on bio­film formation by Salmonella enterica ser. Enteritidis and Typhimurium under low nutrient food-related conditions. Food Research International, 107, pp. 10-18. https://doi.org/10.1016/j.foodres.2018.02.015 PMid:29580466

Jahid, I. K., Lee, N.-Y., Kim, A. y Ha, S.-D. (2013). Influence of glucose concen­trations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila. Jour­nal of Food Protection, 76 (2), pp. 239- 247. https://doi.org/10.4315/0362-028X.JFP-12-321 PMid:23433371

Jeon, H. R., Kwon, M. J. y Yoon, K. S. (2018). Control of Listeria innocua biofilms on food contact surfaces with slightly acid­ic electrolyzed water and the risk of bio­film cells transfer to duck meat. Journal of Food Protection, 81 (4), pp. 582-592. https://doi.org/10.4315/0362-028X.JFP-17-373 PMid:29517351

Jindal, S., Anand, S., Metzger, L. y Amam­charla, J. (2018). Short communication: A comparison of biofilm development on stainless steel and modified-surface plate heat exchangers during a 17-h milk pasteurization run. Journal of Dairy Science, 101 (4), pp. 2921-2926. https://doi.org/10.3168/jds.2017-14028 PMid:29398018

Kadam, S. R., den Besten, H. M. W., van der Veen, S., Zwietering, M. H., Moezelaar, R. y Abee, T. (2013). Diversity assess­ment of Listeria monocytogenes biofilm formation: Impact of growth condition, serotype and strain origin. International Journal of Food Microbiology, 165 (3), pp. 259-264. https://doi.org/10.1016/j.ijfoodmicro.2013.05.025 PMid:23800738

Kim, S., Bang, J., Kim, H., Beuchat, L. R. y Ryu, J. H. (2013). Inactivation of Esch­erichia coli O157: H7 on stainless steel upon exposure to Paenibacillus poly­myxa biofilms. International Journal of Food Microbiology, 167 (3), pp. 328- 336. https://doi.org/10.1016/j.ijfoodmicro.2013.10.004 PMid:24184611

Kim, M. K., Zhao, A., Wang, A., Brown, Z. Z., Muir, T. W., Stone, H. A. y Bassler, B. L. (2017). Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. Na­ture Microbiology, 2 (8), 17080. https://doi.org/10.1038/nmicrobiol.2017.80 PMid:28530651 PMCid:PMC5526357

Kiran, G. S., Lipton, A. N., Kennedy, J., Dobson, A. D. W. y Selvin, J. (2014). A halotolerant thermostable lipase from the marine bac­terium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms. Bioengineered Bugs, 5 (5), pp. 305-318. https://doi.org/10.4161/bioe.29898 PMid:25482232 PMCid:PMC4156492

Larsen, M. H., Dalmasso, M., Ingmer, H., Langsrud, S., Malakauskas, M., Mader, A., Møretrø, T., Možina, S. S., Rychli, K., Wagner, R., Wallace, R. J., Zentek, J. y Jor­dan, K. (2014). Persistence of foodborne pathogens and their control in primary and secondary food production chains. Food Control, 44, pp. 92-109. https://doi.org/10.1016/j.foodcont.2014.03.039

Li, J., Feng, J., Ma, L., Fuente Núñez, C. de la, Gölz, G. y Lu, X. (2017). Effects of meat juice on biofilm formation of Campylo­bacter and Salmonella. International Journal of Food Microbiology, 253, pp. 20-28. https://doi.org/10.1016/j.ijfoodmicro.2017.04.013 PMid:28463724

Liu, J., Prindle, A., Humphries, J., Gabalda- Sagarra, M., Asally, M., Lee, D. Y. D., Ly, S. y Süel, G. M. (2015). Metabolic co-de­pendence gives rise to collective oscilla­tions within biofilms. Nature, 523 (7562), pp. 550-554. https://doi.org/10.1038/nature14660 PMid:26200335 PMCid:PMC4862617

Mai-Prochnow, A., Clauson, M., Hong, J. y Murphy, A. B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scien­tific Reports, 6 (1), 38610. https://doi.org/10.1038/srep38610 PMid:27934958 PMCid:PMC5146927

Makovcova, J., Babak, V., Kulich, P., Masek, J., Slany, M. y Cincarova, L. (2017). Dynamics of mono- and dual-species biofilm formation and interactions between Staphylococcus aureus and Gram-negative bacteria. Microbial Bio­technology, 10 (4), pp. 819-832. https://doi.org/10.1111/1751-7915.12705 PMid:28401747 PMCid:PMC5481519

Mariani, C., Oulahal, N., Chamba, J. F., Du­bois-Brissonnet, F., Notz, E. y Briandet, R. (2011). Inhibition of Listeria mono­cytogenes by resident biofilms present on wooden shelves used for cheese ripening. Food Control, 22 (8), pp. 1357-1362. https://doi.org/10.1016/j.foodcont.2011.02.012

Marti, R., Schmid, M., Kulli, S., Schneeberg­er, K., Naskova, J., Knøchel, S. Ahrens, C. H. y Hummerjohann, J. (2017). Biofilm formation potential of heat-resistant Escherichia coli dairy isolates and the complete genome of multidrug-resis­tant, heat-resistant strain FAM21845. Applied and Environmental Microbio­logy, 83 (15), e00628-17. https://doi.org/10.1128/AEM.00628-17 PMid:28550056 PMCid:PMC5514686

Martin, J. G. P., Oliveira e Silva, G. de, Fon­seca, C. R. da, Morales, C. B., Souza Pamplona Silva, C., Miquelluti, D. L. y Porto, E. (2016). Efficiency of a cleaning protocol for the removal of enterotoxi­genic Staphylococcus aureus strains in dairy plants. International Journal of Food Microbiology, 238, pp. 295-301. https://doi.org/10.1016/j.ijfoodmicro.2016.09.018 PMid:27716472

McKenzie, K., Maclean, M., Timoshkin, I. V., Endarko, E., Macgregor, S. J. y Anderson, J. G. (2013). Photoinactivation of bacte­ria attached to glass and acrylic surfaces by 405 nm light: Potential application for biofilm decontamination. Photochem­istry and Photobiology, 89 (4), pp. 927- 935. https://doi.org/10.1111/php.12077 PMid:23550978

Montgomery, N. L. y Banerjee, P. (2015). Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in biofilms by pulsed ultraviolet light. BMC Re­search Notes, 8 (1), 235. https://doi.org/10.1186/s13104-015-1206-9 PMid:26054759 PMCid:PMC4467610

Moradi, M. y Tajik, H. (2017). Biofilm re­moval potential of neutral electrolysed water on pathogen and spoilage bac­teria in dairy model systems. Journal of Applied Microbiology, 123 (6), pp. 1429-1437. https://doi.org/10.1111/jam.13608 PMid:28994493

Nadell, C. D., Drescher, K. y Foster, K. R. (2016). Spatial structure, cooperation and competition in biofilms. Nature Reviews Microbiology, 14 (9), pp. 589- 600. https://doi.org/10.1038/nrmicro.2016.84 PMid:27452230

Nam, H., Seo, H. S., Bang, J., Kim, H., Beu­chat, L. R. y Ryu, J. H. (2014). Efficacy of gaseous chlorine dioxide in inacti­vating Bacillus cereus spores attached to and in a biofilm on stainless steel. International Journal of Food Microbi­ology, 188, pp. 122-127. https://doi.org/10.1016/j.ijfoodmicro.2014.07.009 PMid:25090607

Nguyen, U. T. y Burrows, L. L. (2014). DN­ase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing bio­films. International Journal of Food Mi­crobiology, 187, pp. 26-32. https://doi.org/10.1016/j.ijfoodmicro.2014.06.025 PMid:25043896

Nicholas, R., Dunton, P., Tatham, A. y Field­ing, L. (2013). The effect of ozone and open air factor on surface-attached and biofilm environmental Listeria monocy­togenes. Journal of Applied Microbiol­ogy, 15 (2), pp. 555-564. https://doi.org/10.1111/jam.12239 PMid:23621101

Niemira, B. A., Boyd, G. y Sites, J. (2014). Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella biofilms. Journal of Food Science, 79 (5), M917-M922. https://doi.org/10.1111/1750-3841.12379 PMid:24749764

Nowak, J., Cruz, C. D., Tempelaars, M., Abee, T., van Vliet, A. H. M., Fletcher, G. C., Hedderley, D., Palmer, J. y Flint, S. (2017). Persistent Listeria monocyto­genes strains isolated from mussel pro­duction facilities form more biofilm but are not linked to specific genetic mark­ers. International Journal of Food Mi­crobiology, 256, pp. 45-53. https://doi.org/10.1016/j.ijfoodmicro.2017.05.024 PMid:28599174

Ortiz, S., López, V. y Martínez-Suárez, J. V. (2014). The influence of subminimal inhibitory concentrations of benzalko­nium chloride on biofilm formation by Listeria monocytogenes. International Journal of Food Microbiology, 189, pp. 106-112. https://doi.org/10.1016/j.ijfoodmicro.2014.08.007 PMid:25136789

Overney, A., Jacques-André-Coquin, J., Ng, P., Carpentier, B., Guillier, L. y Firmesse, O. (2017). Impact of environmental fac­tors on the culturability and viability of Listeria monocytogenes under condi­tions encountered in food processing plants. International Journal of Food Mi­crobiology, 244, pp. 74-81. https://doi.org/10.1016/j.ijfoodmicro.2016.12.012 PMid:28073080

Papaioannou, E., Giaouris, E. D., Berillis, P. y Boziaris, I. S. (2018). Dynamics of biofilm formation by Listeria monocy­togenes on stainless steel under mono-species and mixed-culture simulated fish processing conditions and chemical disinfection challenges. International Journal of Food Microbiology, 267, pp. 9-19. https://doi.org/10.1016/j.ijfoodmicro.2017.12.020 PMid:29275280

Pasvolsky, R., Zakin, V., Ostrova, I. y Shem­esh, M. (2014). Butyric acid released during milk lipolysis triggers biofilm for­mation of Bacillus species. International Journal of Food Microbiology, 181, pp. 19-27. https://doi.org/10.1016/j.ijfoodmicro.2014.04.013 PMid:24801271

Puligundla, P. y Mok, C. (2017). Potential applications of nonthermal plasmas against biofilm-associated micro-organ­isms in vitro. Journal of Applied Microbi­ology, 122 (5), pp. 1134-1148. https://doi.org/10.1111/jam.13404 PMid:28106311

Røder, H. L., Raghupathi, P. K., Herschend, J., Brejnrod, A., Knøchel, S., Sørensen, S. J. y Burmølle, M. (2015). Interspe­cies interactions result in enhanced biofilm formation by co-cultures of bac­teria isolated from a food processing environment. Food Microbiology, 51, pp. 18-24. https://doi.org/10.1016/j.fm.2015.04.008 PMid:26187823

Rodríguez-López, P., Saá-Ibusquiza, P., Mos­quera-Fernández, M. y López-Cabo, M. (2015). Listeria monocytogenes-carry­ing consortia in food industry. Compo­sition, subtyping and numerical charac­terisation of mono-species biofilm dy­namics on stainless steel. International Journal of Food Microbiology, 206, pp. 84-95. https://doi.org/10.1016/j.ijfoodmicro.2015.05.003 PMid:26001376

Rosenberg, G., Steinberg, N., Oppenheimer- Shaanan, Y., Olender, T., Doron, S., Ben- Ari, J., Sirota-Madi, A, Bloom-Acker­mann, Z. y Kolodkin-Gal, I. (2016). Not so simple, not so subtle: The interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms. NPJ Biofilms and Microbiomes, 2 (1), 15027. https://doi.org/10.1038/npjbiofilms.2015.27 PMid:28721238 PMCid:PMC5515258

Sadekuzzaman, M., Yang, S., Mizan, M. F. R. y Ha, S. D. (2017). Reduction of Escherichia coli O157:H7 in biofilms using bacterio­phage BPECO 19. Journal of Food Sci­ence, 82 (6), pp. 1433-1442. https://doi.org/10.1111/1750-3841.13729 PMid:28542913

Sepehr, S., Rahmani-Badi, A., Babaie-Naiej, H. y Soudi, M. R. (2014). Unsaturated fatty acid, cis-2-decenoic acid, in com­bination with disinfectants or antibiot­ics removes pre-established biofilms formed by food-related bacteria. PLoS ONE, 9 (7), e101677. https://doi.org/10.1371/journal.pone.0101677 PMid:25000301 PMCid:PMC4084997

Shafique, M., Alvi, I. A., Abbas, Z. y ur Re­hman, S. (2017). Assessment of bio­film removal capacity of a broad host range bacteriophage JHP against Pseu­domonas aeruginosa. APMIS, 125 (6), pp. 579-584. https://doi.org/10.1111/apm.12691 PMid:28418081

Silva Fernandes, M. da, Kabuki, D. Y. y Kua­ye, A. Y. (2015). Behavior of Listeria monocytogenes in a multi-species bio­film with Enterococcus faecalis and En­terococcus faecium and control through sanitation procedures. International Journal of Food Microbiology, 200, pp. 5-12. https://doi.org/10.1016/j.ijfoodmicro.2015.01.003 PMid:25655573

Skovager, A., Larsen, M. H., Castro-Mejia, J. L., Hecker, M., Albrecht, D., Gerth, U., Arneborg, N. y Ingmer, H. (2013). Initial adhesion of Listeria monocytogenes to fine polished stainless steel under flow conditions is determined by prior growth conditions. International Jour­nal of Food Microbiology, 165 (1), pp. 35-42. https://doi.org/10.1016/j.ijfoodmicro.2013.04.014 PMid:23685728

Slany, M., Oppelt, J. y Cincarova, L. (2017). Formation of Staphylococcus aureus biofilm in the presence of sublethal concentrations of disinfectants stud­ied via a transcriptomic analysis using transcriptome sequencing (RNA-seq). Applied and Environmental Microbiol­ogy, 83 (24), e01643-17. https://doi.org/10.1128/AEM.01643-17 PMid:29030437 PMCid:PMC5717214

Son, H., Park, S., Beuchat, L. R., Kim, H. y Ryu, J. H. (2016). Inhibition of Staphy­lococcus aureus by antimicrobial bio­films formed by competitive exclusion microorganisms on stainless steel. International Journal of Food Microbi­ology, 238, pp. 165-171. https://doi.org/10.1016/j.ijfoodmicro.2016.09.007 PMid:27648758

Stevens, M. R. E., Luo, T. L., Vornhagen, J., Jakubovics, N. S., Gilsdorf, J. R., Marrs, C. F., Møretrø, T. y Rickard, A. H. (2015). Coaggregation occurs between microor­ganisms isolated from different environ­ments. FEMS Microbiology Ecology, 91 (11), fiv123. https://doi.org/10.1093/femsec/fiv123 PMid:26475462

Tack, I. L. M. M., Nimmegeers, P., Akker­mans, S., Hashem, I. y van Impe, J. F. M. (2017). Simulation of Escherichia coli dynamics in biofilms and submerged colonies with an individual-based model including metabolic network information. Frontiers in Microbiol­ogy, 8, 2509. https://doi.org/10.3389/fmicb.2017.02509 PMid:29321772 PMCid:PMC5733555

Tarifa, M. C., Genovese, D., Lozano, J. E. y Brugnoni, L. I. (2018). In situ micro­structure and rheological behavior of yeast biofilms from the juicprocessing industries. Biofouling, 34 (1), pp. 74-85. https://doi.org/10.1080/08927014.2017.1407758 PMid:29228797

Techaruvichit, P., Takahashi, H., Kuda, T., Miya, S., Keeratipibul, S. y Kimura, B. (2016). Adaptation of Campylobacter jejuni to biocides used in the food in­dustry affects biofilm structure, adhe­sion strength, and cross-resistance to clinical antimicrobial compounds. Bio­fouling, 32 (7), pp. 827-839. https://doi.org/10.1080/08927014.2016.1198476 PMid:27353218

Turonova, H., Briandet, R., Rodrigues, R., Hernould, M., Hayek, N., Stintzi, A., Pazlarova, J. y Tresse, O. (2015). Bio­film spatial organization by the emerg­ing pathogen Campylobacter jejuni: Comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions. Frontiers in Microbiology, 6, 709. https://doi.org/10.3389/fmicb.2015.00709 PMid:26217332 PMCid:PMC4499754

Visvalingam, J., Ells, T. C. y Yang, X. (2017). Impact of persistent and nonpersistent generic Escherichia coli and Salmo­nella sp. recovered from a beef pack­ing plant on biofilm formation by E. coli O157. Journal of Applied Microbiology, 123 (6), pp. 1512-1521. https://doi.org/10.1111/jam.13591 PMid:28944561

Vogeleer, P., Tremblay, Y. D. N., Jubelin, G., Jacques, M. y Harel, J. (2016). Biofilm-forming abilities of Shiga toxin-produc­ing Escherichia coli isolates associated with human infections. Applied and Environmental Microbiology, 82 (5), pp. 1448-1458. https://doi.org/10.1128/AEM.02983-15 PMid:26712549 PMCid:PMC4771338

Wang, R., Kalchayanand, N., Schmidt, J. W. y Harhay, D. M. (2013). Mixed biofilm formation by Shiga Toxin-Producing Escherichia coli and Salmonella enterica Serovar Typhimurium enhanced bacte­rial resistance to sanitization due to ex­tracellular polymeric substances. Jour­nal of Food Protection, 76 (9), pp. 1513- 1522. https://doi.org/10.4315/0362-028X.JFP-13-077 PMid:23992495

Wang, J., Ray, A. J., Hammons, S. R. y Oliver, H. F. (2015). Persistent and transient Lis­teria monocytogenes strains from retail deli environments vary in their ability to adhere and form biofilms and rarely have inlA premature stop codons. Food­borne Pathogens and Disease, 12 (2), pp. 151-158. https://doi.org/10.1089/fpd.2014.1837 PMid:25569840

Xue, T., Chen, X. y Shang, F. (2014). Short communication: Effects of lactose and milk on the expression of biofilm-as­sociated genes in Staphylococcus au­reus strains isolated from a dairy cow with mastitis. Journal of Dairy Science, 97 (10), pp. 6129-6134. https://doi.org/10.3168/jds.2014-8344 PMid:25151886

Yu, S., Su, T., Wu, H., Liu, S., Wang, D., Zhao, T., Jin, Z., Du, W., Zhu, M.-J., Chua, S. L., Yang, L., Zhu, D., Gu, L. y Ma, L. Z. (2015). PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. Cell Research, 25 (12), pp. 1352-1367. https://doi.org/10.1038/cr.2015.129 PMid:26611635 PMCid:PMC4670989

Zhao, T., Podtburg, T. C., Zhao, P., Chen, D., Baker, D. A., Cords, B. y Doyle, M. P. (2013). Reduction by competitive bacteria of Listeria monocytogenes in biofilms and Listeria bacteria in floor drains in a ready-to-eat poultry pro­cessing plant. Journal of Food Protec­tion, 76 (4), pp. 601-607. https://doi.org/10.4315/0362-028X.JFP-12-323 PMid:23575121

Ziuzina, D., Boehm, D., Patil, S., Cullen, P. J. y Bourke, P. (2015). Cold plasma inactiva­tion of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS ONE, 10 (9), e0138209. https://doi.org/10.1371/journal.pone.0138209 PMid:26390435 PMCid:PMC4577073

Publicado

2020-03-30

Cómo citar

Fernández-Gómez, P., Prieto, M., Fernández-Escámez, P. S., López, M., & Alvarez-Ordóñez, A. (2020). Biopelículas y persistencia microbiana en la industria alimentaria. Arbor, 196(795), a538. https://doi.org/10.3989/arbor.2020.795n1002

Número

Sección

Artículos