Arbor, Vol 196, No 795 (2020)

Aminas biógenas en alimentos: métodos moleculares para la detección e identificación de bacterias productoras


https://doi.org/10.3989/arbor.2020.795n1009

Beatriz del Río
Instituto de productos lácteos de Asturias. Consejo Superior de Investigaciones Científicas, España
orcid https://orcid.org/0000-0001-8107-1975

Begoña Redruello
Instituto de productos lácteos de Asturias. Consejo Superior de Investigaciones Científicas, España
orcid https://orcid.org/0000-0003-1787-5594

María Fernández
Instituto de productos lácteos de Asturias. Consejo Superior de Investigaciones Científicas, España
orcid https://orcid.org/0000-0002-4413-6861

Victor Ladero
Instituto de productos lácteos de Asturias. Consejo Superior de Investigaciones Científicas, España
orcid https://orcid.org/0000-0002-7613-3745

Miguel A. Álvarez
Instituto de productos lácteos de Asturias. Consejo Superior de Investigaciones Científicas, España
orcid https://orcid.org/0000-0001-9607-7480

Resumen


Las aminas biógenas son compuestos nitrogenados de pequeño tamaño con actividad biológica que se forman por la descarboxilación enzimática de ciertos aminoácidos. Las aminas biógenas se encuentran presentes en todos los seres vivos, en los que participan en procesos biológicas de gran importancia. Sin em­bargo, debido al metabolismo de algunos microorganismos, estos compuestos se pueden acumular en alimentos en concentraciones elevadas, constituyendo un riesgo para la salud de los consumido­res. Para que las aminas biógenas alcancen estas concentraciones elevadas en los alimentos se requiere, como condición indispensa­ble, la presencia de microrganismos productores, por lo que se han desarrollado diferentes métodos para detectar la presencia de los mismos. Entre estos métodos, aquellos basados en técnicas inde­pendientes de cultivo, como la PCR, presentan ventajas como su gran especificidad, el hecho de ser rápidos y de fácil realización, y que en muchos casos ni siquiera es necesario un tratamiento previo de la muestra, lo que facilita su incorporación a las plantas de elabo­ración. En este trabajo se describen algunos de los métodos dispo­nibles en la actualidad para la detección de microorganismos pro­ductores de aminas biógenas, así como sus posibles aplicaciones.

Palabras clave


aminas biógenas; tiramina; histamina; putrescina; alimentos; PCR; métodos moleculares

Texto completo:


HTML PDF XML

Referencias


Alegría, A., Szczesny, P., Mayo, B., Bardows­ki, J. y Kowalczyk, M. (2012). Biodiversity in Oscypek, a traditional Polish cheese, determined by culture-dependent and -independent approaches. Applied and Environmental Microbiology, 78 (6), pp. 1890-1898. https://doi.org/10.1128/ AEM.06081-11

Álvarez, M. A. y Moreno-Arribas, M. V. (2014). The problem of biogenic ami­nes in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends in Food Science & Technology, 39 (2), pp. 146-155.

Bardocz, S. (1999). Role of biogenic ami­nes-summing up or what is it we do not know? En Bardocz, S., Koninkx, J., Gri­llo, M. y White, A. (eds.). Biogenically active amines in food (vol. III), pp. 1-4. Disponible en https://op.europa.eu/en/ publication-detail/-/publication/ed5a­2fd4-32fd-48f7-8175-18a3d28e3b5e/ language-en/format-PDF/source-search

Bermúdez, R., Lorenzo, J. M., Fonseca, S., Franco, I. y Carballo, J. (2012). Strains of Staphylococcus and Bacillus isola­ted from traditional sausages as pro­ducers of biogenic amines. Frontiers in Microbiology, 3, 151.

Bjornsdottir-Butler, K., Jones, J. L., Benner, R. y Burkhardt, W. (2011a). Develo­pment of a real-time PCR assay with an internal amplification control for detection of Gram-negative histamine-producing bacteria in fish. Food Micro­biology, 28 (3), pp. 356-363.

Bjornsdottir-Butler, K., Jones, J. L., Benner, R. A. y Burkhardt, W. (2011b). Quantifi­cation of total and specific gram-nega­tive histamine-producing bacteria spe­cies in fish using an MPN real-time PCR method. Food Microbiology, 28 (7), pp. 1284-1292.

Bjornsdottir-Butler, K., Leon, M. S. y Benner, R. A. Jr. (2016). Draft genome sequen­ces of histamine-producing Morgane­lla psychrotolerans strains. Genome Announcements, 4 (5).

Blackwell, B. (1963). Hypertensive crisis due to monoamine-oxidase inhibi­tors. Lancet, 282 (7313), pp. 849- 851.

Bodmer, S., Imark, C. y Kneubuhl, M. (1999). Biogenic amines in foods: histamine and food processing. Inflammatory Re­search, 48 (6), pp. 296-300.

Bover-Cid, S. y Holzapfel, W. H. (1999). Improved screening procedure for biogenic amine production by lactic acid bacteria. International Journal of Food Microbiology, 53 (1), pp. 33- 41.

Bover-Cid, S., Hugas, M., Izquierdo-Pulido, M. y Vidal-Carou, M C. (2001). Amino acid-decarboxylase activity of bacteria isolated from fermented pork sausages. International Journal of Food Microbio­logy, 66 (3), pp. 185-189.

Bover-Cid, S., Schoppen, S., Izquierdo- Pulido, M. y Vidal-Carou, M. C. (1999). Relationship between biogenic amine contents and the size of dry fermented sausages. Meat Science, 51 (4), pp. 305- 311.

Cachaldora, A., Fonseca, S., Franco, I. y Carballo, J. (2013). Technological and safety characteristics of Staphylococ­caceae isolated from Spanish traditio­nal dry-cured sausages. Food Micro­biology, 33 (1), pp. 61-68.

Calles-Enríquez, M., Eriksen, B. H., Ander­sen, P. S., Rattray, F. P., Johansen, A. H., Fernández, M., Ladero, V. y Álvarez, M. A. (2010). Sequencing and transcriptio­nal analysis of the Streptococcus ther­mophilus histamine biosynthesis gene cluster: factors that affect differential hdcA expression. Applied and Envi­ronmental Microbiology, 76 (18), pp. 6231-6238.

Cocolin, L., Díez, A., Urso, R., Rantsiou, K., Comi, G., Bermaier, I. y Beimfohr, C. (2007). Optimization of conditions for profiling bacterial populations in food by culture-independent methods. International Journal of Food Mi­crobiology, 120 (1-2), pp. 100-109.

Costantini, A., Cersosimo, M., Prete, V. del y García-Moruno, E. (2006). Produc­tion of biogenic amines by lactic acid bacteria: Screening by PCR, thin-layer chromatography, and high-performan­ce liquid chromatography of strains isolated from wine and must. Journal of Food Protection, 69 (2), pp. 391- 396.

Coton, E. y Coton, M. (2005). Multiplex PCR for colony direct detection of Gram-po­sitive histamine- and tyramine-produ­cing bacteria. Journal of Microbiological Methods, 63 (3), pp. 296-304.

Coton, M., Romano, A., Spano, G., Ziegler, K., Vetrana, C., Desmarais, C., Lonvaud- Funel, A., Lucas, P. y Coton, E. (2010). Occurrence of biogenic amine-forming lactic acid bacteria in wine and ci­der. Food Microbiology, 27 (8), pp. 1078-1085.

Díaz, M., Ladero, V., Río, B. del, Redruello, B., Fernández, M., Martín, M. C. y Álva­rez, M. A. (2016). Biofilm-forming capa­city in biogenic amine-producing bacte­ria isolated from dairy products. Fron­tiers in Microbiology, 7, 591.

Díaz, M., Ladero, V., Redruello, B., Sánchez- Llana, E., del Río, B., Fernández, M., Mar­tín, M. C. y Álvarez, M. A. (2016). A PCR-DGGE method for the identification of histamine-producing bacteria in cheese. Food Control, 63, pp. 216-223.

Díaz, M., Río, B. del, Ladero, V., Redruello, B., Fernández, M., Martín, M. C. y Ál­varez, M. A. (2015). Isolation and typi­fication of histamine-producing Lacto­bacillus vaginalis strains from cheese. International Journal of Food Micro­biology, 215, pp. 117-123.

Díaz, M., Río, B. del, Sánchez-Llana, E., La­dero, V., Redruello, B., Fernández, M., Martín, M. C. y Álvarez, M. A. (2016). His­tamine-producing Lactobacillus parabu­chneri strains isolated from grated chee­se can form biofilms on stainless steel. Food Microbiology, 59, 85-91.

Díaz, M., Río, B. del, Sánchez-Llana, E., La­dero, V., Redruello, B., Fernández, M. […] y Álvarez, M. A. (2018). Lactobaci­llus parabuchneri produces histamine in refrigetared cheese at a temperatu­re-dependent rate. International Jour­nal of Food Science and Technology, 53 (10), pp. 2342-2348.

EFSA Panel on BiologicalHazards (BIOHAZ) (2011). Scientific Opinion on risk based control of biogenic amine formation in fermented foods. EFSA Journal, 9 (10), pp. 2393-2486.

Fernández-No, I. C., Bohme, K., Calo-Mata, P. y Barros-Velázquez, J. (2011). Characte­risation of histamine-producing bacteria from farmed blackspot seabream (Page­llus bogaraveo) and turbot (Psetta maxi­ma). International Journal of Food Micro­biology, 151 (2), pp. 182-189.

Fernández, M., Flórez, A. B., Linares, D. M., Mayo, B. y Álvarez, M. A. (2006). Early PCR detection of tyramine-producing bacteria during cheese production. Journal of Dairy Research, 73 (3), pp. 318-321.

Fernández, M., Linares, D. M. y Álvarez, M. A. (2004). Sequencing of the tyro­sine decarboxylase cluster of Lacto­coccus lactis IPLA 655 and the develo­pment of a PCR method for detecting tyrosine decarboxylating lactic acid bacteria. Journal of Food Protection, 67 (11), pp. 2521-2529.

Fernández, M., Linares, D. M., Río, B. del, Ladero, V. y Álvarez, M. A. (2007). HPLC quantification of biogenic amines in cheeses: correlation with PCR-detec­tion of tyramine-producing microorga­nisms. Journal of Dairy Research, 74 (3), pp. 276-282.

Fernández, M., Río, B. del, Linares, D. M., Martín, M. C. y Álvarez, M. A. (2006). Real-time polymerase chain reaction for quantitative detection of histamine-pro­ducing bacteria: Use in cheese produc­tion. Journal of Dairy Science, 89 (10), pp. 3763-3769.

Flórez, A. B. y Mayo, B. (2006). PCR-DGGE as a tool for characterizing dominant microbial populations in the Spanish blue-veined Cabrales cheese. Inter­national Dairy Journal, 16 (10), pp. 1205-1210.

Garai, G., Dueñas, M. T., Irastorza, A., Maztin-Álvarez, P .J. y Moreno-Arribas, M. V. (2006). Biogenic amines in na­tural ciders. Journal of Food Protec­tion, 69 (12), 3006-3012.

Gardini, F., Ozogul, Y., Suzzi, G., Tabanelli, G. y Ozogul, F. (2016). Technological fac­tors affecting biogenic amine content in foods: a review. Frontiers in Microbio­logy, 7, 1218.

Geornaras, I., Dykes, G. A. y von Holy, A. (1995). Biogenic amine formation by poultry-associated spoilage and patho­genic bacteria. Letters in Applied Mi­crobiology, 21 (3), pp. 164-166.

Guidi, L. R. y Gloria, M. B. (2012). Bioactive ami­nes in soy sauce: validation of method, oc­currence and potential health effects. Food Chemistry, 133 (2), pp. 323-328.

Joosten, H. M. y Northolt, M. D. (1989). Detection, growth, and amine-produ­cing capacity of lactobacilli in cheese. Applied and Environmental Microbiolo­gy, 55 (9), pp. 2356-2359.

Jorgensen, L. V., Huss, H. H. y Dalgaard, P. (2000). The effect of biogenic amine production by single bacterial cultu­res and metabiosis on cold-smoked salmon. Journal of Applied Microbio­logy, 89 (6), pp. 920-934.

Kalac, P. y Krausova, P. (2005). A review of dietary polyamines: Formation, im­plications for growth and health and occurrence in foods. Food Chemistry, 90 (1-2), pp. 219-230.

Kim, S. H., Field, K. G., Morrissey, M. T., Pri­ce, R. J., Wei, C. I. y An, H. (2001). Sou­rce and identification of histamine-pro­ducing bacteria from fresh and tempe­rature-abused albacore. Journal of Food Protection, 64, 7, 1035-1044.

Ladero, V., Calles-Enríquez, M., Fernán­dez, M. y Álvarez, M. A. (2010). Toxi­cological effects of dietary biogenic amines. Current Nutrition and Food Science, 6 (2), pp. 145-156.

Ladero, V., Cañedo, E., Pérez, M., Cruz Mar­tín, M., Fernández, M. y Álvarez, M. A. (2012). Multiplex qPCR for the detection and quantification of putrescine-produ­cing lactic acid bacteria in dairy products. Food Control, 27 (2), pp. 307-313.

Ladero, V., Coton, M., Fernández, M., Bu­ron, N., Martín, M. C., Guichard, H., Co­ton, E. y Álvarez, M. A. (2011). Biogenic amines content in Spanish and French natural ciders: Application of qPCR for quantitative detection of biogenic amine-producers. Food Microbiology, 28, (3), pp. 554-561.

Ladero, V., Fernández, M. y Álvarez, M. A. (2009). Effect of post-ripening processing on the histamine and histamine-producing bacteria contents of diffe­rent cheeses. International Dairy Jour­nal, 19 (12), pp. 759-762.

Ladero, V., Fernández, M., Calles-Enríquez, M., Sánchez-Llana, E., Cañedo, E.Martín, M. C. y Álvarez, M. A. (2012). Is the pro­duction of the biogenic amines tyrami­ne and putrescine a species-level trait in enterococci? Food Microbiology, 30 (1), pp. 132-138.

Ladero, V., Fernández, M., Cuesta, I. y Ál­varez, M. A. (2010). Quantitative de­tection and identification of tyramine-producing enterococci and lactobacilli in cheese by multiplex qPCR. Food Mi­crobiology, 27 (7), pp. 933-939.

Ladero, V., Linares, D. M., Fernández, M. y Álvarez, M. A. (2008). Real time quan­titative PCR detection of histamine-producing lactic acid bacteria in cheese: Relation with histamine content. Food Research International, 41 (10), pp. 1015-1019.

Ladero, V., Linares, D. M., Río, B. del, Fer­nández, M., Martín, M. C. y Álvarez, M. A. (2013). Draft genome sequence of the tyramine producer Enterococcus durans strain IPLA 655. Genome Annou­ncements, 1 (3), e00265-13.

Ladero, V., Martín, M., Redruello, B., Mayo, B., Flórez, A., Fernández, M. y Álvarez, M. A. (2015). Genetic and functional analy­sis of biogenic amine production capacity among starter and non-starter lactic acid bacteria isolated from artisanal cheeses. European Food Research and Techno­logy, 241 (3), pp. 377-383.

Ladero, V., Martínez, N., Martín, M. C., Fernández, M. y Álvarez, M. A. (2010). qPCR for quantitative detection of tyramine-producing bacteria in dairy products. Food Research Internatio­nal, 43 (1), pp. 289-295.

Ladero, V., Rattray, F. P., Mayo, B., Martín, M. C., Fernández, M. y Álvarez, M. A. (2011). Sequencing and transcriptional analysis of the biosynthesis gene clus­ter of putrescine-producing Lactococ­cus lactis. Applied and Environmental Microbiology, 77 (18), pp. 6409-6418.

Ladero, V., Río, B. del, Linares, D. M., Fer­nández, M., Mayo, B., Martín, M. C. y Álvarez, M. A. (2014). Genome sequen­ce analysis of the biogenic amine-pro­ducing strain Lactococcus lactis subsp. cremoris cect 8666 (formerly GE2- 14). Genome Announcements, 2 (5), e01088-14.

Landete, J. M., Rivas, B. de las, Marco­bal, A. y Muñoz, R. (2007). Molecular methods for the detection of biogenic amine-producing bacteria on foods. International Journal of Food Microbio­logy, 117 (3), pp. 258-269.

Landete, J. M., Rivas, B. de las, Marcobal, A. y Muñoz, R. (2011). PCR methods for the detection of biogenic amine-pro­ducing bacteria on wine. Annals of Mi­crobiology, 61 (1), pp. 159-166.

Latorre-Moratalla, M. L., Bosch-Fuste, J., Lavizzari, T., Bover-Cid, S., Veciana- Nogués, M. T., y Vidal-Carou, M. C. (2009). Validation of an ultra high pres­sure liquid chromatographic method for the determination of biologically active amines in food. Journal of Chro­matography A, 1216 (45), pp. 7715- 7720.

Latorre-Moratalla, M. L., Bover-Cid, S., Veciana-Nogués, T. y Vidal-Carou, M. C. (2009). Thin-layer chromatography for the identification and semi-quantifi­cation of biogenic amines produced by bacteria. Journal of Chromatography A, 1216 (18), pp. 4128-4132.

Le Jeune, C., Lonvaud-Funel, A., ten Brink, B., Hofstra, H. y van der Vossen, J. M. (1995). Development of a detection sys­tem for histidine decarboxylating lactic acid bacteria based on DNA probes, PCR and activity test. Journal of Appllied Bac­teriology, 78 (3), pp. 316-326.

Linares, D. M., Cruz Martín, M., Ladero, V., Álvarez, M. A. y Fernández, M. (2011). Biogenic amines in dairy products. Cri­tical Reviews in Food Science and Nutri­tion, 51, (7), pp. 691-703.

Linares, D. M., Fernández, M., Río, B. del, Ladero, V., Martín, M. C. y Álvarez, M. A. (2012). The tyrosyl-tRNA synthetase like gene located in the tyramine biosynthe­sis cluster of Enterococcus durans is transcriptionally regulated by tyrosine concentration and extracellular pH. BMC Microbiology, 12, (23).

Linares, D. M., Río, B. del, Redruello, B., Ladero, V., Martín, M. C., Fernández, M., Ruas-Madiedo, P. y Álvarez, M. A. (2016). Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and hista­mine. Food Chemistry, 197, pp. 658- 663.

Lucas, P. M., Claisse, O. y Lonvaud-Funel, A. (2008). High frequency of histamine-producing bacteria in the enological environment and instability of the his­tidine decarboxylase production phe­notype. Applied and Environmental Mi­crobiology, 74 (3), pp. 811-817.

Lucas, P. y Lonvaud-Funel, A. (2002). Purifi­cation and partial gene sequence of the tyrosine decarboxylase of Lactobacillus brevis IOEB 9809. FEMS Microbiology Letters, 211 (1), pp. 85-89.

Maijala, R. L. (1993). Formation of histamine and tyramine by some lactic acid bacteria in MRS-broth and modified decarboxyla­tion agar. Letters in Applied Microbiology, 17 (1), pp. 40-43.

Marcobal, A., Rivas, B. de las, Moreno- Arribas, M. V. y Muñoz, R. (2005). Mul­tiplex PCR method for the simultaneous detection of histamine-, tyramine-, and putrescine-producing lactic acid bac­teria in foods. Journal of Food Protec­tion, 68 (4), pp. 874-878.

Marcobal, A., Rivas, B. de las, Moreno-Arri­bas, M. V. y Muñoz, R. (2006). Evidence for horizontal gene transfer as origin of putrescine production in Oenococcus oeni RM83. Applied and Environmental Microbiology, 72 (12), pp. 7954-7958.

Martín, B., Garriga, M., Hugas, M., Bover- Cid, S., Veciana-Nogués, M. T. y Ay­merich, T. (2006). Molecular, techno­logical and safety characterization of Gram-positive catalase-positive cocci from slightly fermented sausages. In­ternational Journal of Food Microbio­logy, 107, (2), pp. 148-158.

Martín, M. C., Fernández, M., Linares, D. M. y Álvarez, M. A. (2005). Sequencing, characterization and transcriptional analysis of the histidine decarboxyla­se operon of Lactobacillus buchneri. Microbiology-Sgm, 151, pp. 1219-1228.

Martínez, N., Martín, M. C., Herrero, A., Fernández, M., Álvarez, M. A. y Ladero, V. (2011). qPCR as a powerful tool for microbial food spoilage quantification: Significance for food quality. Trends in Food Science & Technology, 22 (7), pp. 367-376.

Masson, F., Johansson, G. y Montel, M. C. (1999). Tyramine production by a strain of Carnobacterium divergens inoculated in meat-fat mixture. Meat Science, 52, (1), pp. 65-69.

Mayo, B., Rachid, C. T., Alegría, A., Leite, A. M., Peixoto, R. S. y Delgado, S. (2014). Impact of next generation sequen­cing techniques in food microbiology. Current Genomics, 15 (4), 293-309.

Mayr, C. M. y Schieberle, P. (2012). Develo­pment of stable isotope dilution assays for the simultaneous quantitation of bio­genic amines and polyamines in foods by LC-MS/MS. Journal of Agricultural and Food Chemistry, 60 (12), pp. 3026-3032.

Mercogliano, R., Felice, A. de, Chirollo, C. y Cortesi, M. L. (2010). Production of vasoactive amines during the ripening of Pecorino Carmasciano cheese. Ve­terinarian Research Communnications, 34, 175-178.

Mitar, I., Ljubenkov, I., Rohtek, N., Prkic, A., Andelic, I. y Vuletic, N. (2018). The content of biogenic amines in croatian wines of different geographical origins. Molecules, 23 (10), 2570.

Nannelli, F., Claisse, O., Gindreau, E., Re­vel, G. de, Lonvaud-Funel, A. y Lucas, P. M. (2008). Determination of lactic acid bacteria producing biogenic amines in wine by quantitative PCR methods. Letters in Applied Microbiology, 47 (6), pp. 594-599.

Novella-Rodríguez, S., Veciana-Nogués, M. T., Izquierdo-Pulido, M. y Vidal-Carou, M. C. (2003). Distribution of biogenic amines and polyamines in cheese. Jour­nal of Food Science, 68 (3), pp. 750-755.

Novella-Rodríguez, S. N., Veciana-Nogués, M. T., Roig-Sagués, A. X., Trujillo-Mesa, A .J. y Vidal-Carou, M. C. (2004). Eva­luation of biogenic amines and micro­bial counts throughout the ripening of goat cheeses from pasteurized and raw milk. Journal of Dairy Research, 71 (2), pp. 245-252.

Novella-Rodríguez, S., Veciana-Nogués, M. T. y Vidal-Carou, M. C. (2000). Bio­genic amines and polyamines in milks and cheeses by ion-pair high perfor­mance liquid chromatography. Journal of Agricultural and Food Chemistry, 48 (11), pp. 5117-5123.

O’Sullivan, D. J., Fallico, V., O’Sullivan, O., McSweeney, P. L., Sheehan, J. J., Cotter, P. D. y Giblin, L. (2015). High-throughput DNA sequencing to survey bacterial histidine and tyrosine decarboxylases in raw milk cheeses. BMC Microbiol, 15 (1), 266.

Ozdestan, O. y Uren, A. (2010). Biogenic amine content of kefir: A fermented dairy product. European Food Research and Technology, 231 (1), pp. 101-107.

Pérez, M., Calles-Enríquez, M., Nes, I., Mar­tín, M. C., Fernández, M., Ladero, V. y Ál­varez, M. A. (2015). Tyramine biosynthe­sis is transcriptionally induced at low pH and improves the fitness of Entero­coccus faecalis in acidic environments. Applied Microbiology and Biotechnolo­gy, 99 (8), pp. 3547-3558.

Pérez, M., Ladero, V., Río, B. del, Redruello, B., Jong, A. de, Kuipers, O., Kok, J., Mar­tín, M. C., Fernández, M. y Álvarez, M. A. (2017). The relationship among tyrosine decarboxylase and agmatine deiminase pathways in Enterococcus faecalis. Fron­tiers in Microbiology, 8, 2107.

Pinho, O., Pintado, A. I. E., Gomes, A. M. P., Pintado, M. M. E., Malcata, F. X. y Ferreira, I. M. (2004). Interrelations­hips among microbiological, physico­chemical, and biochemical properties of Terrincho cheese, with emphasis on biogenic amines. Journal of Food Pro­tection, 67 (12), pp. 2779-2785.

Podeur, G., Dalgaard, P., Leroi, F., Prevost, H., Emborg, J., Martinussen, J., Hansen, L. H. y Pilet, M. F. (2015). Development of a real-time PCR method coupled with a selective pre-enrichment step for quantification of Morganella mor­ganii and Morganella psychrotolerans in fish products. International Journal of Food Microbiology, 203, pp. 55-62.

Redruello, B., Ladero, V., Cuesta, I., Álvarez- Buylla, J. R., Martín, M. C., Fernández, M. y Álvarez, M. A. (2013). A fast, re­liable, ultra high performance liquid chromatography method for the simul­taneous determination of amino acids, biogenic amines and ammonium ions in cheese, using diethyl ethoxymethyle­nemalonate as a derivatising agent. Food Chemistry, 139 (1-4), pp. 1029- 1035.

Redruello, B., Ladero, V., Río, B. del, Fernán­dez, M., Martín, M. C. y Álvarez, M. A. (2016). Data on recovery of 21 amino acids, 9 biogenic amines and ammonium ions after spiking four different beers with five concentrations of these analytes. Data in Brief, 9, pp. 398-400.

Río, B. del, Binetti, A. G., Martín, M. C., Fernández, M., Magadan, A. H. y Álva­rez, M. A. (2007). Multiplex PCR for the detection and identification of dairy bacteriophages in milk. Food Micro­biology, 24 (1), pp. 75-81.

Río, B. del, Redruello, B., Linares, D. M., La­dero, V., Fernández, M., Martín, M. C., Ruas-Madiedo, P. y Álvarez, M. A. (2017). The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture. Food Chemistry, 218, pp. 249-255.

Río, B. del, Redruello, B., Linares, D. M., La­dero, V., Ruas-Madiedo, P., Fernández, M., Martín, M. C. y Álvarez, M. A. (2019). The biogenic amines putrescine and ca­daverine show in vitro cytotoxicity at con­centrations that can be found in foods. Scientific Reports, 9 (1), e120.

Río, B. del, Redruello, B., Martín, M. C., Fernández, M., Jong, A. de, Kuipers, O. P., Ladero, V. y Álvarez, M. A. (2016). Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine. Genomics Data, 7, pp. 112-114.

Rivas, B. de las, Marcobal, A., Carrascosa, A. V. y Muñoz, R. (2006). PCR detection of foodborne bacteria producing the biogenic amines histamine, tyramine, putrescine, and cadaverine. Journal of Food Protection, 69 (10), pp. 2509-2514.

Rivas, B. de las, Marcobal, A. y Muñoz, R. (2005). Improved multiplex-PCR method for the simultaneous detec­tion of food bacteria producing bio­genic amines. FEMS Microbiology Let­ters, 244 (2), pp. 367-372.

Romano, A., Ladero, V., Álvarez, M. A. y Lucas, P. M. (2014). Putrescine pro­duction via the ornithine decarboxyla­tion pathway improves the acid stress survival of Lactobacillus brevis and is part of a horizontally transferred acid resistance locus. International Journal of Food Microbiology, 175, pp. 14-19.

Romano, A., Trip, H., Lolkema, J. S. y Lucas, P. M. (2013). Three-component lysine/ ornithine decarboxylation system in Lactobacillus saerimneri 30a. Journal of Bacteriology, 195 (6), pp. 1249-1254.

Shukla, S., Park, H. K., Kim, J. K. y Kim, M. (2010). Determination of biogenic amines in Korean traditional fermented soybean paste (Doenjang). Food and Chemical To­xicology, 48 (5), pp. 1191-1195.

Silla Santos, M. H. (1996). Biogenic ami­nes: their importance in foods. Inter­national Journal of Food Microbiolo­gy, 29 (2-3), pp. 213-231.

Smidt, O. de (2016). The use of PCR-DGGE to determine bacterial fingerprints for poul­try and red meat abattoir effluent. Letters in Applied Microbiology, 62 (1), pp. 1-8.

Taylor, S. L. y World Health Organization (1985). Histamine poisoning associated with fish, cheese and other foods. Report VPH/FOS/85.1. WorldHealth Organiza­tion. [En línea]. Disponible en https:// apps.who.int/iris/handle/10665/66407

ten Brink, B., Damink, C., Joosten, H. M. y Tveld, J. H. (1990). Occurrence and for­mation of biologically-active amines in foods. International Journal of Food Mi­crobiology, 11 (1), pp. 73-84.

Torriani, S., Gatto, V., Sembeni, S., Tofalo, R., Suzzi, G., Belletti, N., Gardini, F. y Bover-Cid, S. (2008). Rapid detection and quantification of tyrosine decar­boxylase gene (tdc) and its expression in gram-positive bacteria associated with fermented foods using PCR-ba­sed methods. Journal of Food Protec­tion, 71, (1), pp. 93-101.

Trip, H., Mulder, N. L., Rattray, F. P. y Lolkema, J. S. (2011). HdcB, a novel enzyme cataly­sing maturation of pyruvoyl-dependent histidine decarboxylase. Molecular Micro­biology, 79 (4), pp. 861-871.

Walsh, A. M., Crispie, F., Claesson, M .J. y Cotter, P. D. (2017). Translating omics to food microbiology. Annual Reviews in Food Science and Technology, 8, pp. 113-134.

Wuthrich, D., Berthoud, H., Wechsler, D., Eugster, E., Irmler, S. y Bruggmann, R. (2017). The histidine decarboxylase gene cluster of Lactobacillus parabuchneri was gained by horizontal gene transfer and is mobile within the species. Fron­tiers in Microbiology, 8, 218.

Yongsawatdigul, J., Choi, Y. J. y Udomporn, S. (2004). Biogenic amines formation in fish sauce prepared from fresh and temperature- abused Indianan chovy (Stolepho rusindicus). Journal of Food Science, 69 (4), pp. 312-319.

Recursos en línea

Scombrotoxin (histamine) formation. [En línea]. Disponible en https://www.fda. gov/media/80248/download




Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista arbor@csic.es

Soporte técnico soporte.tecnico.revistas@csic.es