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RESUMEN: Actualmente existe una importante interfaz entre ma-
temáticas y física teórica, que ha producido áreas completamente 
nuevas. Este artículo está basado en un debate en una mesa redonda 
organizada en el entorno del International Congress of Mathema-
ticians en 2006 de Madrid, explora algunos de estos temas: los 
diferentes objetivos y pasado de ambas disciplinas, las interacciones 
actuales y sus precedentes, las posibilidades para el futuro y el papel 
de las matemáticas para entender el mundo en que vivimos.
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Mathematics.

ABSTRACT: There is at the moment a highly active interface between 
mathematics and theoretical physics, which extends into completely new 
areas of both disciplines. This article, based on a round table discussion 
which took place as part of the activities around the 2006 International 
Congress of Mathematicians in Madrid, explores some of the issues invol-
ved: the differing goals and backgrounds of the two communities, today’s 
interactions and their precedents, the possibilities for the future and the 
role of mathematics itself in understanding the world in which we live.
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This article is based on issues raised during

a public round table discussion at

the Residencia de Estudiantes on September 7th 2006

organized by the Spanish Red Temática de Geometría y Física.

MATHEMATICIANS AND PHYSICISTS

According to Galileo Galilei, “Mathematics is the language 

with which God has written the universe,” a view echoed 

400 years later in Eugene Wigner’s paper entitled “The 

Unreasonable Effectiveness of Mathematics in the Natural 

Sciences”. The past 30 years has seen a significant change, 

however, which some have characterized as “The Unrea-

sonable Effectiveness of Physics in Mathematics”. How has 

this come about? Is it good for mathematics? Is it good 

for physics?

To understand the current situation one needs also to un-

derstand the differing aims and methods of both groups. A 

physicist’s attempt to understand physical reality is based 

on experiments, measurements and the recognition and 

formulation of laws. To frame those rules, mathematics is 

necessary, but however sophisticated a tool, it is used for 

the purpose of better understanding the physical proc-

esses. Its ultimate validation is its agreement with experi-

mentation, when that is possible. Thus physicists believe 

in quantum field theory not because it is a rigorous piece 

of mathematics, but because it gives them the correct 

answers to many decimal places.

They work in different ways from mathematicians, attack-

ing current problems with a huge concentration of forces. 

They have no time to wait for the full mathematical theory 

but proceed with great momentum that carries them be-

yond the stage where the hypotheses are testable.

Contrast this with the mathematician, willing to wait years 

to complete a theory, like Andrew Wiles’s celebrated proof 

of Fermat’s theorem or, closer to physical reality, Carl Frie-

drich Gauss’s 25 years of secretly studying the differential 

geometry of surfaces (the physical reality that Gauss was 

attempting to describe there was founded in geodesy). The 

pure mathematician is, in the public’s view, a practitioner 
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of an art which “possesses not only truth, but supreme 

beauty –a beauty cold and austere, like that of sculpture, 

without appeal to any part of our weaker nature”, in Ber-

trand Russell’s words. Can there be any common ground 

for both communities to work in?

One answer is to say that science is not actually describing 

physical reality but is concerned with human understand-

ing of it. In this view, the beauty and elegance of math-

ematics is a guide towards a theory that has a coherence 

and simplicity that aids our comprehension of nature. But 

beauty alone can lead the physicist astray. Who can deny 

that Johannes Kepler’s original view of the solar system 

based on the Platonic solids was beautiful? But it was 

plain wrong. Kepler tried hard to avoid the conclusion 

that the planetary orbits were elliptic but in the end he 

had to admit it was a fact. Whether he appreciated it as a 

manifestation of another beautiful piece of mathematics is 

not clear but what actually happened was that one elegant 

model was replaced by another more sophisticated one.

It is perfectly possible to change one’s view of what con-

stitutes a simple elegant theory. The cause need not even 

be a failure of the theory to agree with experiment. It can 

also come from a better understanding of mathematics. 

Albert Einstein in his younger days complained “since the 

mathematicians have invaded the theory of relativity, I do 

not understand it myself” but 20 years later offered the 

opinion that “nature is the realization of the simplest pos-

sible mathematical ideas.”

But mathematicians rarely pursue art for art’s sake. They 

are always out to discover and understand. Here is Galileo 

again: “All truths are easy to understand once they are dis-

covered; the point is to discover them.” And for mathema-

ticians knowing what is true, or discovering what is true, is 

a matter of analogy and metaphor, comparisons with other 

parts of mathematics –or more frequently from outside 

mathematics, in the physical sciences. Mathematical proof 

is often another question involving technique, knowledge 

of what others have done and sheer invention.

Nor is mathematics a static discipline. It has its own in-

ternal dynamics: some fields develop and brush against 

neighbouring areas, some settle down to steady progress 

for a few decades and then explode. Some of the growth 

areas of the 1960s, for example, when resources were 

poured into science, became quiescent twenty years later 

but then sprang back into life. Or to take a longer-term 

view one might pick out Bernhard Riemann’s work in the 

mid 19th century on differential geometry; its subsequent 

development in higher dimensions by Gregorio Ricci-Cur-

bastro in 1904 prepared it for its phenomenal expansion 

when it was seen as the language in which to express 

Einstein’s general relativity. More recently, and certainly 

at the International Congress in Madrid, one experienced 

the shift from deterministic to stochastic methods, which 

have their origins in the 19th century physicists’ study of 

thermodynamics. These movements sometimes originate 

from developments within the subject, sometimes from 

external influences.

Both communities of mathematicians and physicists are 

alive and evolving, and aiming at discovery, but their 

backgrounds and motivations differ. This diversity is a 

source of strength if the two groups can focus on a com-

mon problem.

CURRENT INTERACTIONS

Perhaps the most exciting interaction between physics and 

mathematics at the moment is in Quantum Field Theory 

and String Theory. Any interaction is a two-way process 

but in the past few years it is the predictive power of String 

Theory in pure mathematics that is the most astonishing 

feature. New facts and coincidences are being pointed out, 

not only in traditional areas with a common interface, but 

also way beyond that, in algebraic geometry and number 

theory. It is as if today’s theoretical physics has had the 

power to jump into the interior of pure mathematics and 

tear it apart.

The cynical might say that this is not an achievement of 

String Theory but a manifestation of its failure to be pre-

dictive about actual physical reality. Is it really a physical 

theory, or simply a set of analogies? Are mathematicians 

just feeding off the physicists’ intuition because pure 

mathematics is the only place where the theory is ap-

plicable? The counterargument is to assert that String 

Theory is a consistent theory but it is so complicated that 

it has to use every tool in the mathematician’s cupboard. 

It may still be true that “nature is the realization of the 
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simplest possible mathematical ideas”, it’s just that you 

need to know a lot of mathematics to see how simple 

it is.

String theorists would freely admit that they don’t know 

what the theory is, but they are fairly sure that what 

they have is a genuine theory. What they observe is its 

implications at different limits of coupling constants 

where it makes contact with other areas of mathemat-

ics. The fundamental concepts in the terra incognita 

at its centre are unknown yet its deep consistency un-

earths structures across a wide range of mathematics. 

They also admit that is harder than they thought when 

the possibilities opened up in the mid 1980s, but by 

being harder it has drawn them closer to mathematics 

and they are quite happy to use the predictive power 

within that domain, given that the physical experiments 

are currently impractical.

Most mathematicians welcome this interaction and are 

happy to use the “unreasonable effectiveness of the 

equations of mathematical physics in pure mathematics”. 

These have a history, since before String Theory. Hermann 

Weyl investigated the representation theory of groups 

because of its use in quantum mechanics, but it is now 

a tool throughout mathematics: in algebra, geometry and 

number theory. The more recent interactions involve the 

Fields Medal-winning work of Simon Donaldson using 

Yang-Mills equations to probe the topology of four-dimen-

sional manifolds and that of Vaughan Jones and Edward 

Witten in defining knot invariants. These are practical (in 

a mathematical sense) theories that can be put to use in 

many areas, but often the crucial advances were achieved 

by pursuing the physicist’s intuition. Some would say that 

these are advances that perhaps mathematicians did not 

deserve.

In the current phase of interaction, mathematicians are 

now becoming familiar with the physicists’ way of wrap-

ping up mathematical information in a partition function. 

This becomes a formal means of counting objects that 

have been considered individually in the past but not sys-

tematically in such a way. These objects might be algebraic 

curves, or numbers of intersections or numbers of solutions 

to certain equations, all wrapped up in a generating func-

tion. Sometimes there is a subtlety in counting multiplici-

ties which has eluded the mathematicians but which is 

natural for the physicists and leads to functional equations 

which the generating functions satisfy.

From the physicist’s point of view the process of interac-

tion works like this:

(i)  Start with a mathematical problem.

(ii)  Formulate it as a (non-rigorous) field theory.

(iii)  Study different pictures and limits.

(iv)  Discover new mathematical objects.

Given this global view, one can highlight certain exam-

ples. Donaldson theory is viewed as perturbative. The dis-

tinct, non-perturbative picture of the same theory yields 

Seiberg-Witten theory. Here was a piece of mathematics 

which, we were told, would describe in a different way the 

same invariants as Donaldson did. And why? Because they 

are two limiting forms of the same quantum field theory.

What the mathematicians found was that it gave them 

a brand-new method to prove efficiently precisely the 

results they were finding it hard to achieve with stand-

ard Donaldson theory. There was a period in 1995 when 

geometers burnt the midnight oil to race each other to 

proofs of some longstanding conjectures using this new 

method. “Donaldson theory is dead” they would say, but in 

the fullness of time it became clear that the two methods 

were in fact complementary. A mathematical proof of the 

link between the two is still not quite achieved ten years 

later –this is testament to the power of the physics to 

unearth the truth.

The point here is that the perturbative/non-perturbative 

physics view created a double-edged sword for mathema-

ticians to attack some old problems. In another setting, 

that of Chern-Simons theory applied to the theory of 

knots and links, the perturbative view gives the Vassiliev 

invariants and the non-perturbative the Jones-Witten 

polynomial invariants.

It may have been that some of these theories were devel-

oped independent of this view, but their universality when 

seen from this perspective not only gives them a hidden 

cohesion, but in the long term the experience with math-

ematics may be used in reverse to provide input into the 

efforts to construct a rigorous mathematical framework 

for Quantum Field Theory and String Theory.
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PRECEDENTS

Is this interaction with physics new? Are there historical 

precedents? It is difficult to transport oneself into the 

past or to guess what the thoughts and stimuli of math-

ematicians were then. The numbers were fewer, scientific 

activity as a whole was on a smaller scale. A physicist 

or mathematician in the past was not so specialized and 

was thus open through correspondence or discussions with 

scientific colleagues to a host of inputs across a broad 

spectrum of science. Yet usually the flow of information 

was from mathematics to physics. It was rare for a subject 

as pure as geometry to feel the effects.

There are nevertheless instances of this happening. In the 

mid 19th century Riemann introduced analytical methods 

into the algebraic geometry of curves. These were some-

times “proved” by appeal to physical principles such as the 

Dirichlet principle, a technique motivated by the physical 

tenet that nature works by minimizing actions and energy. 

Yet the whole apparatus of differentials and theta func-

tions enabled remarkable results to be proved or rendered 

obvious; special facts like the existence of precisely 28 

bitangents to a quartic curve or 120 tritangent planes to 

a genus four curve are not so far removed in spirit from 

the remarkable count of rational curves on the quintic 

threefold by Candelas et al. which is the most startling 

application of the string theorists’ mirror symmetry in al-

gebraic geometry. If one looks at the journals of the time, 

one will also see a very rapid succession of applications 

of these methods before a settling down at the end of the 

century to a mixture of techniques.

If one goes further back in time, then giants like Newton 

stand out of course in fusing mathematics with physics. 

But this long-past world really was a foreign country, as 

anyone who has pored over Newton’s notebooks will see, 

where detailed calculations fill the gaps in long discussions 

of biblical history.

The present is different because it consists of a refocus-

ing of previously divergent paths in mathematics. The 

rapid expansion in mathematics in the post-war period 

was channelled into new areas where there were plenty 

of problems to solve. But that was not necessarily sus-

tained –the problems became more challenging and new 

techniques were more difficult to find. Caught up in their 

own world, mathematicians were less open to ideas from 

physics. Perhaps a good demonstration of this, and how 

it was overcome, is the index theorem, one of the most 

important results in the 20th century for unifying different 

branches of mathematics.

In 1962 Michael Atiyah and Isadore Singer began work 

on this theorem, for which they were awarded the Abel 

Prize in 2004. It began as a quest to explain why certain 

rational numbers in algebraic topology are integers –were 

they related to dimensions of vector spaces? In pursu-

ing this aim, they rediscovered one of the fundamental 

differential operators of physics– the Dirac operator. Of 

course this was not in quite the same setting –they were 

working in Riemannian geometry rather than Einstein’s 

space-time, but it was essentially the same operator. There 

began several proofs: the first two used ideas from two of 

the most active areas of mathematics at the time. The first 

was a part of algebraic topology –Rene Thom’s cobordism 

theory. Then came the second proof (with a wider range 

of applicability) using the far-reaching abstract ideas of 

Alexandre Grothendieck in algebraic geometry. Much later, 

in the mid 1970s, a third proof involving the heat kernel 

and differential geometry emerged.

Yet at the same time physicists were in the process of 

rediscovering the theorem. Singer once remarked that this 

was taking place in the adjacent corridor at MIT to his 

own office. For the physicists, who were studying what 

they called anomalies, the heat kernel expansions were 

commonplace. The new ideas for them were the links 

with algebraic topology. So the evolution of their theo-

rem was proceeding in the opposite direction and only in 

the late 1970s, as both mathematicians and physicists got 

interested in the Yang-Mills equations, did they really put 

their heads together. This was a crucial moment, when the 

mathematicians realized that physicists had uncovered a 

completely new way of looking at what they called con-

nections and physicists realized that the problems that had 

been bothering them for some time could be resolved by 

the use of some quite sophisticated mathematics which 

was only then being developed. It was no longer true that 

the only mathematics a physicist needed to know was how 

to integrate by parts!

In many respects this was an influx of “classical ideas” 

from physics to mathematics but it was not long before 
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those mathematical results could be viewed as part of a 

much bigger quantum field theory and the full force of the 

physicists’ intuition could be brought into play.

There is, then, a difference between the current interac-

tions and those of previous periods. It involves the scale 

of interactions, the range of mathematics being utilized 

and the changing dynamics of the subject. And still the 

underlying irony is that the mathematical results that are 

being correctly predicted are often based on a nonrigor-

ously posed quantum field theory.

WHY PHYSICS?

Misha Gromov, the celebrated mathematician, winner of 

the Wolf, Kyoto and Balzan Prizes has recently been giv-

ing seminars entitled “How a Mathematician May Think of 

Proteins”. His recent researches, carried out at the Institut 

des Hautes Etudes Scientifiques in Paris, or the Courant 

Institute in New York, have concentrated on many prob-

lems in biology. Does this herald a new set of intuitions 

entering into the mathematical mainstream, a new area 

of science where mathematics can benefit from outside 

influences? Why should physics be the only partner to this 

most abstract of sciences?

The interaction with biology is at an early phase but it 

seems unlikely that it will have as much influence as 

physics in the development of new mathematical ideas. 

We discussed earlier the cultural differences and work-

ing practices of the two communities of mathematicians 

and physicists. These are far more pronounced when one 

considers biologists. The first is the size –there are perhaps 

a million research workers in biology, and in the region 

of 60,000 in mathematics. The biologists work in larger 

groups and much of their activity is experimental, with a 

wide diversity of experiments. Actually checking the valid-

ity of the experiments is very difficult let alone formulat-

ing possible laws to explain the results. And the pace of 

advance is probably faster than in theoretical physics. If a 

mathematician produces a paper once a year, a biologist 

will do so once a month.

It is equally true that the subjects that most directly 

impinge on biology such as biochemistry are sciences 

which are furthest away from mathematics. The closest 

discipline to mathematics is, and always will be, physics. 

Biology is growing and growing fast, not only in research 

but also as a popular subject in schools and university, but 

its enormous achievements have largely been carried out 

without theoretical mathematical input. The same could 

not be said of physics.

Nevertheless, just because String Theory has an important 

link with mathematics at the moment it does not mean that 

this should be an exclusive interface. There is surely room 

for absorbing not just new problems but new points of view 

from other areas such as condensed matter physics.

WHY MATHEMATICS?

String theory has come in for criticism recently, with 

heightened public awareness coming from the publication 

of books such as Peter Woit’s “Not Even Wrong” or Lee 

Smolin’s “The Trouble with Physics”. The suspicion is that, 

without experimental evidence, String Theory has become 

too close a friend of pure mathematics and has strayed 

too far from what physicists should be doing. Implicit in 

this is the criticism that what pure mathematicians do is 

so disconnected from the real world that it can be of no 

use. Why, for example, should the government of a devel-

oping country put resources into either mathematics or 

theoretical physics?

G. H. Hardy is usually quoted as being proud, in the period 

after the First World War, of the uselessness, or harmless-

ness, of pure mathematics, but he also said “Pure math-

ematics is on the whole distinctly more useful than applied. 

For what is useful above all is technique, and mathematical 

technique is taught mainly through pure mathematics.” Ne-

hru also had a high opinion of mathematics “ Mathematics 

is the vehicle of exact scientific thought. It has widened 

the horizons of the human mind tremendously”. He certainly 

valued the contribution to a developing country of theoreti-

cal science and mathematics.

Working mathematicians always feel that there is some 

link from their world to recognizable reality. How else 

can they discover things? Hardy writes: “I believe that 

mathematical reality lies outside us, that our function is 
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to discover or observe it, and that the theorems which 

we prove, and which we describe grandiloquently as our 

“creations,” are simply the notes of our observations.” 

Some chain of reasoning, analogy or technique links what 

we do with physical reality. If we tug on that chain then, 

however small the impact, we hope that our perception of 

reality is enhanced.

Science is full of dead ends, theories that came to nothing, 

but a mathematical proof is always valid. One hopes it can 

contribute in some way to basic research, for without basic 

research there is no applied research. It’s just that one may 

have to wait for the mathematics to find its application. Kiy-

oshi Ito’s work on stochastic analysis had to wait 50 years 

before it was implemented in the financial markets, and the 

Greeks’ work on ellipses was put to use in astronomy 1500 

years later. So perhaps we have to wait another 50 years for 

String Theory to be fully understood and put to the test. In 

the meantime we should keep an open mind and enjoy the 

new insights it gives to our own discipline.
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