Aminas biógenas en alimentos: métodos moleculares para la detección e identificación de bacterias productoras

Autores/as

DOI:

https://doi.org/10.3989/arbor.2020.795n1009

Palabras clave:

aminas biógenas, tiramina, histamina, putrescina, alimentos, PCR, métodos moleculares

Resumen


Las aminas biógenas son compuestos nitrogenados de pequeño tamaño con actividad biológica que se forman por la descarboxilación enzimática de ciertos aminoácidos. Las aminas biógenas se encuentran presentes en todos los seres vivos, en los que participan en procesos biológicas de gran importancia. Sin em­bargo, debido al metabolismo de algunos microorganismos, estos compuestos se pueden acumular en alimentos en concentraciones elevadas, constituyendo un riesgo para la salud de los consumido­res. Para que las aminas biógenas alcancen estas concentraciones elevadas en los alimentos se requiere, como condición indispensa­ble, la presencia de microrganismos productores, por lo que se han desarrollado diferentes métodos para detectar la presencia de los mismos. Entre estos métodos, aquellos basados en técnicas inde­pendientes de cultivo, como la PCR, presentan ventajas como su gran especificidad, el hecho de ser rápidos y de fácil realización, y que en muchos casos ni siquiera es necesario un tratamiento previo de la muestra, lo que facilita su incorporación a las plantas de elabo­ración. En este trabajo se describen algunos de los métodos dispo­nibles en la actualidad para la detección de microorganismos pro­ductores de aminas biógenas, así como sus posibles aplicaciones.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alegría, A., Szczesny, P., Mayo, B., Bardows­ki, J. y Kowalczyk, M. (2012). Biodiversity in Oscypek, a traditional Polish cheese, determined by culture-dependent and -independent approaches. Applied and Environmental Microbiology, 78 (6), pp. 1890-1898. https://doi.org/10.1128/AEM.06081-11 PMid:22247135 PMCid:PMC3298175

Álvarez, M. A. y Moreno-Arribas, M. V. (2014). The problem of biogenic ami­nes in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends in Food Science & Technology, 39 (2), pp. 146-155. https://doi.org/10.1016/j.tifs.2014.07.007

Bardocz, S. (1999). Role of biogenic ami­nes-summing up or what is it we do not know? En Bardocz, S., Koninkx, J., Gri­llo, M. y White, A. (eds.). Biogenically active amines in food (vol. III), pp. 1-4. Disponible en https://op.europa.eu/en/publication-detail/-/publication/ed5a­2fd4-32fd-48f7-8175-18a3d28e3b5e/ language-en/format-PDF/source-search

Bermúdez, R., Lorenzo, J. M., Fonseca, S., Franco, I. y Carballo, J. (2012). Strains of Staphylococcus and Bacillus isola­ted from traditional sausages as pro­ducers of biogenic amines. Frontiers in Microbiology, 3, 151. https://doi.org/10.3389/fmicb.2012.00151 PMid:22529847 PMCid:PMC3328851

Bjornsdottir-Butler, K., Jones, J. L., Benner, R. y Burkhardt, W. (2011a). Develo­pment of a real-time PCR assay with an internal amplification control for detection of Gram-negative histamine-producing bacteria in fish. Food Micro­biology, 28 (3), pp. 356-363. https://doi.org/10.1016/j.fm.2010.06.013 PMid:21356438

Bjornsdottir-Butler, K., Jones, J. L., Benner, R. A. y Burkhardt, W. (2011b). Quantifi­cation of total and specific gram-nega­tive histamine-producing bacteria spe­cies in fish using an MPN real-time PCR method. Food Microbiology, 28 (7), pp. 1284-1292. https://doi.org/10.1016/j.fm.2011.05.006 PMid:21839377

Bjornsdottir-Butler, K., Leon, M. S. y Benner, R. A. Jr. (2016). Draft genome sequen­ces of histamine-producing Morgane­lla psychrotolerans strains. Genome Announcements, 4 (5). https://doi.org/10.1128/genomeA.01001-16 PMid:27635011 PMCid:PMC5026451

Blackwell, B. (1963). Hypertensive crisis due to monoamine-oxidase inhibi­tors. Lancet, 282 (7313), pp. 849- 851. https://doi.org/10.1016/S0140-6736(63)92743-0

Bodmer, S., Imark, C. y Kneubuhl, M. (1999). Biogenic amines in foods: histamine and food processing. Inflammatory Re­search, 48 (6), pp. 296-300. https://doi.org/10.1007/s000110050463 PMid:10442480

Bover-Cid, S. y Holzapfel, W. H. (1999). Improved screening procedure for biogenic amine production by lactic acid bacteria. International Journal of Food Microbiology, 53 (1), pp. 33- 41. https://doi.org/10.1016/S0168-1605(99)00152-X

Bover-Cid, S., Hugas, M., Izquierdo-Pulido, M. y Vidal-Carou, M C. (2001). Amino acid-decarboxylase activity of bacteria isolated from fermented pork sausages. International Journal of Food Microbio­logy, 66 (3), pp. 185-189. https://doi.org/10.1016/S0168-1605(00)00526-2

Bover-Cid, S., Schoppen, S., Izquierdo- Pulido, M. y Vidal-Carou, M. C. (1999). Relationship between biogenic amine contents and the size of dry fermented sausages. Meat Science, 51 (4), pp. 305- 311. https://doi.org/10.1016/S0309-1740(98)00120-X

Cachaldora, A., Fonseca, S., Franco, I. y Carballo, J. (2013). Technological and safety characteristics of Staphylococ­caceae isolated from Spanish traditio­nal dry-cured sausages. Food Micro­biology, 33 (1), pp. 61-68. https://doi.org/10.1016/j.fm.2012.08.013 PMid:23122502

Calles-Enríquez, M., Eriksen, B. H., Ander­sen, P. S., Rattray, F. P., Johansen, A. H., Fernández, M., Ladero, V. y Álvarez, M. A. (2010). Sequencing and transcriptio­nal analysis of the Streptococcus ther­mophilus histamine biosynthesis gene cluster: factors that affect differential hdcA expression. Applied and Envi­ronmental Microbiology, 76 (18), pp. 6231-6238. https://doi.org/10.1128/AEM.00827-10 PMid:20656875 PMCid:PMC2937487

Cocolin, L., Díez, A., Urso, R., Rantsiou, K., Comi, G., Bermaier, I. y Beimfohr, C. (2007). Optimization of conditions for profiling bacterial populations in food by culture-independent methods. International Journal of Food Mi­crobiology, 120 (1-2), pp. 100-109. https://doi.org/10.1016/j.ijfoodmicro.2007.06.015 PMid:17604862

Costantini, A., Cersosimo, M., Prete, V. del y García-Moruno, E. (2006). Produc­tion of biogenic amines by lactic acid bacteria: Screening by PCR, thin-layer chromatography, and high-performan­ce liquid chromatography of strains isolated from wine and must. Journal of Food Protection, 69 (2), pp. 391- 396. https://doi.org/10.4315/0362-028X-69.2.391 PMid:16496581

Coton, E. y Coton, M. (2005). Multiplex PCR for colony direct detection of Gram-po­sitive histamine- and tyramine-produ­cing bacteria. Journal of Microbiological Methods, 63 (3), pp. 296-304. https://doi.org/10.1016/j.mimet.2005.04.001 PMid:15935495

Coton, M., Romano, A., Spano, G., Ziegler, K., Vetrana, C., Desmarais, C., Lonvaud- Funel, A., Lucas, P. y Coton, E. (2010). Occurrence of biogenic amine-forming lactic acid bacteria in wine and ci­der. Food Microbiology, 27 (8), pp. 1078-1085. https://doi.org/10.1016/j.fm.2010.07.012 PMid:20832688

Díaz, M., Ladero, V., Río, B. del, Redruello, B., Fernández, M., Martín, M. C. y Álva­rez, M. A. (2016). Biofilm-forming capa­city in biogenic amine-producing bacte­ria isolated from dairy products. Fron­tiers in Microbiology, 7, 591. https://doi.org/10.3389/fmicb.2016.00591

Díaz, M., Ladero, V., Redruello, B., Sánchez- Llana, E., del Río, B., Fernández, M., Mar­tín, M. C. y Álvarez, M. A. (2016). A PCR-DGGE method for the identification of histamine-producing bacteria in cheese. Food Control, 63, pp. 216-223. https://doi.org/10.1016/j.foodcont.2015.11.035

Díaz, M., Río, B. del, Ladero, V., Redruello, B., Fernández, M., Martín, M. C. y Ál­varez, M. A. (2015). Isolation and typi­fication of histamine-producing Lacto­bacillus vaginalis strains from cheese. International Journal of Food Micro­biology, 215, pp. 117-123. https://doi.org/10.1016/j.ijfoodmicro.2015.08.026 PMid:26394683

Díaz, M., Río, B. del, Sánchez-Llana, E., La­dero, V., Redruello, B., Fernández, M., Martín, M. C. y Álvarez, M. A. (2016). His­tamine-producing Lactobacillus parabu­chneri strains isolated from grated chee­se can form biofilms on stainless steel. Food Microbiology, 59, 85-91. https://doi.org/10.1016/j.fm.2016.05.012 PMid:27375247

Díaz, M., Río, B. del, Sánchez-Llana, E., La­dero, V., Redruello, B., Fernández, M. […] y Álvarez, M. A. (2018). Lactobaci­llus parabuchneri produces histamine in refrigetared cheese at a temperatu­re-dependent rate. International Jour­nal of Food Science and Technology, 53 (10), pp. 2342-2348. https://doi.org/10.1111/ijfs.13826

EFSA Panel on BiologicalHazards (BIOHAZ) (2011). Scientific Opinion on risk based control of biogenic amine formation in fermented foods. EFSA Journal, 9 (10), pp. 2393-2486. https://doi.org/10.2903/j.efsa.2011.2393

Fernández-No, I. C., Bohme, K., Calo-Mata, P. y Barros-Velázquez, J. (2011). Characte­risation of histamine-producing bacteria from farmed blackspot seabream (Page­llus bogaraveo) and turbot (Psetta maxi­ma). International Journal of Food Micro­biology, 151 (2), pp. 182-189. https://doi.org/10.1016/j.ijfoodmicro.2011.08.024 PMid:21925757

Fernández, M., Flórez, A. B., Linares, D. M., Mayo, B. y Álvarez, M. A. (2006). Early PCR detection of tyramine-producing bacteria during cheese production. Journal of Dairy Research, 73 (3), pp. 318-321. https://doi.org/10.1017/S0022029906001750 PMid:16674840

Fernández, M., Linares, D. M. y Álvarez, M. A. (2004). Sequencing of the tyro­sine decarboxylase cluster of Lacto­coccus lactis IPLA 655 and the develo­pment of a PCR method for detecting tyrosine decarboxylating lactic acid bacteria. Journal of Food Protection, 67 (11), pp. 2521-2529. https://doi.org/10.4315/0362-028X-67.11.2521 PMid:15553636

Fernández, M., Linares, D. M., Río, B. del, Ladero, V. y Álvarez, M. A. (2007). HPLC quantification of biogenic amines in cheeses: correlation with PCR-detec­tion of tyramine-producing microorga­nisms. Journal of Dairy Research, 74 (3), pp. 276-282. https://doi.org/10.1017/S0022029907002488 PMid:17466118

Fernández, M., Río, B. del, Linares, D. M., Martín, M. C. y Álvarez, M. A. (2006). Real-time polymerase chain reaction for quantitative detection of histamine-pro­ducing bacteria: Use in cheese produc­tion. Journal of Dairy Science, 89 (10), pp. 3763-3769. https://doi.org/10.3168/jds.S0022-0302(06)72417-1

Flórez, A. B. y Mayo, B. (2006). PCR-DGGE as a tool for characterizing dominant microbial populations in the Spanish blue-veined Cabrales cheese. Inter­national Dairy Journal, 16 (10), pp. 1205-1210. https://doi.org/10.1016/j.idairyj.2005.11.008

Garai, G., Dueñas, M. T., Irastorza, A., Maztin-Álvarez, P .J. y Moreno-Arribas, M. V. (2006). Biogenic amines in na­tural ciders. Journal of Food Protec­tion, 69 (12), 3006-3012. https://doi.org/10.4315/0362-028X-69.12.3006 PMid:17186671

Gardini, F., Ozogul, Y., Suzzi, G., Tabanelli, G. y Ozogul, F. (2016). Technological fac­tors affecting biogenic amine content in foods: a review. Frontiers in Microbio­logy, 7, 1218. https://doi.org/10.3389/fmicb.2016.01218

Geornaras, I., Dykes, G. A. y von Holy, A. (1995). Biogenic amine formation by poultry-associated spoilage and patho­genic bacteria. Letters in Applied Mi­crobiology, 21 (3), pp. 164-166. https://doi.org/10.1111/j.1472-765X.1995.tb01032.x PMid:7576501

Guidi, L. R. y Gloria, M. B. (2012). Bioactive ami­nes in soy sauce: validation of method, oc­currence and potential health effects. Food Chemistry, 133 (2), pp. 323-328. https://doi.org/10.1016/j.foodchem.2012.01.033 PMid:25683402

Joosten, H. M. y Northolt, M. D. (1989). Detection, growth, and amine-produ­cing capacity of lactobacilli in cheese. Applied and Environmental Microbiolo­gy, 55 (9), pp. 2356-2359. https://doi.org/10.1128/AEM.55.9.2356-2359.1989 PMid:16348016

Jorgensen, L. V., Huss, H. H. y Dalgaard, P. (2000). The effect of biogenic amine production by single bacterial cultu­res and metabiosis on cold-smoked salmon. Journal of Applied Microbio­logy, 89 (6), pp. 920-934. https://doi.org/10.1046/j.1365-2672.2000.01196.x PMid:11123465

Kalac, P. y Krausova, P. (2005). A review of dietary polyamines: Formation, im­plications for growth and health and occurrence in foods. Food Chemistry, 90 (1-2), pp. 219-230. https://doi.org/10.1016/j.foodchem.2004.03.044

Kim, S. H., Field, K. G., Morrissey, M. T., Pri­ce, R. J., Wei, C. I. y An, H. (2001). Sou­rce and identification of histamine-pro­ducing bacteria from fresh and tempe­rature-abused albacore. Journal of Food Protection, 64, 7, 1035-1044. https://doi.org/10.4315/0362-028X-64.7.1035 PMid:11456189

Ladero, V., Calles-Enríquez, M., Fernán­dez, M. y Álvarez, M. A. (2010). Toxi­cological effects of dietary biogenic amines. Current Nutrition and Food Science, 6 (2), pp. 145-156. https://doi.org/10.2174/157340110791233256

Ladero, V., Cañedo, E., Pérez, M., Cruz Mar­tín, M., Fernández, M. y Álvarez, M. A. (2012). Multiplex qPCR for the detection and quantification of putrescine-produ­cing lactic acid bacteria in dairy products. Food Control, 27 (2), pp. 307-313. https://doi.org/10.1016/j.foodcont.2012.03.024

Ladero, V., Coton, M., Fernández, M., Bu­ron, N., Martín, M. C., Guichard, H., Co­ton, E. y Álvarez, M. A. (2011). Biogenic amines content in Spanish and French natural ciders: Application of qPCR for quantitative detection of biogenic amine-producers. Food Microbiology, 28, (3), pp. 554-561. https://doi.org/10.1016/j.fm.2010.11.005 PMid:21356464

Ladero, V., Fernández, M. y Álvarez, M. A. (2009). Effect of post-ripening processing on the histamine and histamine-producing bacteria contents of diffe­rent cheeses. International Dairy Jour­nal, 19 (12), pp. 759-762. https://doi.org/10.1016/j.idairyj.2009.05.010

Ladero, V., Fernández, M., Calles-Enríquez, M., Sánchez-Llana, E., Cañedo, E.Martín, M. C. y Álvarez, M. A. (2012). Is the pro­duction of the biogenic amines tyrami­ne and putrescine a species-level trait in enterococci? Food Microbiology, 30 (1), pp. 132-138. https://doi.org/10.1016/j.fm.2011.12.016 PMid:22265293

Ladero, V., Fernández, M., Cuesta, I. y Ál­varez, M. A. (2010). Quantitative de­tection and identification of tyramine-producing enterococci and lactobacilli in cheese by multiplex qPCR. Food Mi­crobiology, 27 (7), pp. 933-939. https://doi.org/10.1016/j.fm.2010.05.026 PMid:20688235

Ladero, V., Linares, D. M., Fernández, M. y Álvarez, M. A. (2008). Real time quan­titative PCR detection of histamine-producing lactic acid bacteria in cheese: Relation with histamine content. Food Research International, 41 (10), pp. 1015-1019. https://doi.org/10.1016/j.foodres.2008.08.001

Ladero, V., Linares, D. M., Río, B. del, Fer­nández, M., Martín, M. C. y Álvarez, M. A. (2013). Draft genome sequence of the tyramine producer Enterococcus durans strain IPLA 655. Genome Annou­ncements, 1 (3), e00265-13. https://doi.org/10.1128/genomeA.00265-13 PMid:23682153 PMCid:PMC3656215

Ladero, V., Martín, M., Redruello, B., Mayo, B., Flórez, A., Fernández, M. y Álvarez, M. A. (2015). Genetic and functional analy­sis of biogenic amine production capacity among starter and non-starter lactic acid bacteria isolated from artisanal cheeses. European Food Research and Techno­logy, 241 (3), pp. 377-383. https://doi.org/10.1007/s00217-015-2469-z

Ladero, V., Martínez, N., Martín, M. C., Fernández, M. y Álvarez, M. A. (2010). qPCR for quantitative detection of tyramine-producing bacteria in dairy products. Food Research Internatio­nal, 43 (1), pp. 289-295. https://doi.org/10.1016/j.foodres.2009.10.007

Ladero, V., Rattray, F. P., Mayo, B., Martín, M. C., Fernández, M. y Álvarez, M. A. (2011). Sequencing and transcriptional analysis of the biosynthesis gene clus­ter of putrescine-producing Lactococ­cus lactis. Applied and Environmental Microbiology, 77 (18), pp. 6409-6418. https://doi.org/10.1128/AEM.05507-11 PMid:21803900 PMCid:PMC3187148

Ladero, V., Río, B. del, Linares, D. M., Fer­nández, M., Mayo, B., Martín, M. C. y Álvarez, M. A. (2014). Genome sequen­ce analysis of the biogenic amine-pro­ducing strain Lactococcus lactis subsp. cremoris cect 8666 (formerly GE2- 14). Genome Announcements, 2 (5), e01088-14. https://doi.org/10.1128/genomeA.01088-14 PMid:25342694 PMCid:PMC4208338

Landete, J. M., Rivas, B. de las, Marco­bal, A. y Muñoz, R. (2007). Molecular methods for the detection of biogenic amine-producing bacteria on foods. International Journal of Food Microbio­logy, 117 (3), pp. 258-269. https://doi.org/10.1016/j.ijfoodmicro.2007.05.001 PMid:17532497

Landete, J. M., Rivas, B. de las, Marcobal, A. y Muñoz, R. (2011). PCR methods for the detection of biogenic amine-pro­ducing bacteria on wine. Annals of Mi­crobiology, 61 (1), pp. 159-166. https://doi.org/10.1007/s13213-010-0068-6

Latorre-Moratalla, M. L., Bosch-Fuste, J., Lavizzari, T., Bover-Cid, S., Veciana- Nogués, M. T., y Vidal-Carou, M. C. (2009). Validation of an ultra high pres­sure liquid chromatographic method for the determination of biologically active amines in food. Journal of Chro­matography A, 1216 (45), pp. 7715- 7720. https://doi.org/10.1016/j.chroma.2009.08.072 PMid:19762030

Latorre-Moratalla, M. L., Bover-Cid, S., Veciana-Nogués, T. y Vidal-Carou, M. C. (2009). Thin-layer chromatography for the identification and semi-quantifi­cation of biogenic amines produced by bacteria. Journal of Chromatography A, 1216 (18), pp. 4128-4132. https://doi.org/10.1016/j.chroma.2009.02.045 PMid:19286188

Le Jeune, C., Lonvaud-Funel, A., ten Brink, B., Hofstra, H. y van der Vossen, J. M. (1995). Development of a detection sys­tem for histidine decarboxylating lactic acid bacteria based on DNA probes, PCR and activity test. Journal of Appllied Bac­teriology, 78 (3), pp. 316-326. https://doi.org/10.1111/j.1365-2672.1995.tb05032.x PMid:7730207

Linares, D. M., Cruz Martín, M., Ladero, V., Álvarez, M. A. y Fernández, M. (2011). Biogenic amines in dairy products. Cri­tical Reviews in Food Science and Nutri­tion, 51, (7), pp. 691-703. https://doi.org/10.1080/10408398.2011.582813 PMid:21793728

Linares, D. M., Fernández, M., Río, B. del, Ladero, V., Martín, M. C. y Álvarez, M. A. (2012). The tyrosyl-tRNA synthetase like gene located in the tyramine biosynthe­sis cluster of Enterococcus durans is transcriptionally regulated by tyrosine concentration and extracellular pH. BMC Microbiology, 12, (23). https://doi.org/10.1186/1471-2180-12-23 PMid:22333391 PMCid:PMC3315439

Linares, D. M., Río, B. del, Redruello, B., Ladero, V., Martín, M. C., Fernández, M., Ruas-Madiedo, P. y Álvarez, M. A. (2016). Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and hista­mine. Food Chemistry, 197, pp. 658- 663. https://doi.org/10.1016/j.foodchem.2015.11.013 PMid:26617000

Lucas, P. M., Claisse, O. y Lonvaud-Funel, A. (2008). High frequency of histamine-producing bacteria in the enological environment and instability of the his­tidine decarboxylase production phe­notype. Applied and Environmental Mi­crobiology, 74 (3), pp. 811-817. https://doi.org/10.1128/AEM.01496-07 PMid:18065614 PMCid:PMC2227711

Lucas, P. y Lonvaud-Funel, A. (2002). Purifi­cation and partial gene sequence of the tyrosine decarboxylase of Lactobacillus brevis IOEB 9809. FEMS Microbiology Letters, 211 (1), pp. 85-89. https://doi.org/10.1111/j.1574-6968.2002.tb11207.x PMid:12052555

Maijala, R. L. (1993). Formation of histamine and tyramine by some lactic acid bacteria in MRS-broth and modified decarboxyla­tion agar. Letters in Applied Microbiology, 17 (1), pp. 40-43. https://doi.org/10.1111/j.1472-765X.1993.tb01431.x

Marcobal, A., Rivas, B. de las, Moreno- Arribas, M. V. y Muñoz, R. (2005). Mul­tiplex PCR method for the simultaneous detection of histamine-, tyramine-, and putrescine-producing lactic acid bac­teria in foods. Journal of Food Protec­tion, 68 (4), pp. 874-878. https://doi.org/10.4315/0362-028X-68.4.874 PMid:15830688

Marcobal, A., Rivas, B. de las, Moreno-Arri­bas, M. V. y Muñoz, R. (2006). Evidence for horizontal gene transfer as origin of putrescine production in Oenococcus oeni RM83. Applied and Environmental Microbiology, 72 (12), pp. 7954-7958. https://doi.org/10.1128/AEM.01213-06 PMid:17056681 PMCid:PMC1694244

Martín, B., Garriga, M., Hugas, M., Bover- Cid, S., Veciana-Nogués, M. T. y Ay­merich, T. (2006). Molecular, techno­logical and safety characterization of Gram-positive catalase-positive cocci from slightly fermented sausages. In­ternational Journal of Food Microbio­logy, 107, (2), pp. 148-158. https://doi.org/10.1016/j.ijfoodmicro.2005.08.024 PMid:16297478

Martín, M. C., Fernández, M., Linares, D. M. y Álvarez, M. A. (2005). Sequencing, characterization and transcriptional analysis of the histidine decarboxyla­se operon of Lactobacillus buchneri. Microbiology-Sgm, 151, pp. 1219-1228. https://doi.org/10.1099/mic.0.27459-0 PMid:15817789

Martínez, N., Martín, M. C., Herrero, A., Fernández, M., Álvarez, M. A. y Ladero, V. (2011). qPCR as a powerful tool for microbial food spoilage quantification: Significance for food quality. Trends in Food Science & Technology, 22 (7), pp. 367-376. https://doi.org/10.1016/j.tifs.2011.04.004

Masson, F., Johansson, G. y Montel, M. C. (1999). Tyramine production by a strain of Carnobacterium divergens inoculated in meat-fat mixture. Meat Science, 52, (1), pp. 65-69. https://doi.org/10.1016/S0309-1740(98)00149-1

Mayo, B., Rachid, C. T., Alegría, A., Leite, A. M., Peixoto, R. S. y Delgado, S. (2014). Impact of next generation sequen­cing techniques in food microbiology. Current Genomics, 15 (4), 293-309. https://doi.org/10.2174/1389202915666140616233211 PMid:25132799 PMCid:PMC4133952

Mayr, C. M. y Schieberle, P. (2012). Develo­pment of stable isotope dilution assays for the simultaneous quantitation of bio­genic amines and polyamines in foods by LC-MS/MS. Journal of Agricultural and Food Chemistry, 60 (12), pp. 3026-3032. https://doi.org/10.1021/jf204900v PMid:22390280

Mercogliano, R., Felice, A. de, Chirollo, C. y Cortesi, M. L. (2010). Production of vasoactive amines during the ripening of Pecorino Carmasciano cheese. Ve­terinarian Research Communnications, 34, 175-178. https://doi.org/10.1007/s11259-010-9394-1 PMid:20480231

Mitar, I., Ljubenkov, I., Rohtek, N., Prkic, A., Andelic, I. y Vuletic, N. (2018). The content of biogenic amines in croatian wines of different geographical origins. Molecules, 23 (10), 2570. https://doi.org/10.3390/molecules23102570 PMid:30304777 PMCid:PMC6222796

Nannelli, F., Claisse, O., Gindreau, E., Re­vel, G. de, Lonvaud-Funel, A. y Lucas, P. M. (2008). Determination of lactic acid bacteria producing biogenic amines in wine by quantitative PCR methods. Letters in Applied Microbiology, 47 (6), pp. 594-599. https://doi.org/10.1111/j.1472-765X.2008.02472.x PMid:19120932

Novella-Rodríguez, S., Veciana-Nogués, M. T., Izquierdo-Pulido, M. y Vidal-Carou, M. C. (2003). Distribution of biogenic amines and polyamines in cheese. Jour­nal of Food Science, 68 (3), pp. 750-755. https://doi.org/10.1111/j.1365-2621.2003.tb08236.x

Novella-Rodríguez, S. N., Veciana-Nogués, M. T., Roig-Sagués, A. X., Trujillo-Mesa, A .J. y Vidal-Carou, M. C. (2004). Eva­luation of biogenic amines and micro­bial counts throughout the ripening of goat cheeses from pasteurized and raw milk. Journal of Dairy Research, 71 (2), pp. 245-252. https://doi.org/10.1017/S0022029904000147 PMid:15190954

Novella-Rodríguez, S., Veciana-Nogués, M. T. y Vidal-Carou, M. C. (2000). Bio­genic amines and polyamines in milks and cheeses by ion-pair high perfor­mance liquid chromatography. Journal of Agricultural and Food Chemistry, 48 (11), pp. 5117-5123. https://doi.org/10.1021/jf0002084 PMid:11087446

O'Sullivan, D. J., Fallico, V., O'Sullivan, O., McSweeney, P. L., Sheehan, J. J., Cotter, P. D. y Giblin, L. (2015). High-throughput DNA sequencing to survey bacterial histidine and tyrosine decarboxylases in raw milk cheeses. BMC Microbiol, 15 (1), 266. https://doi.org/10.1186/s12866-015-0596-0 PMid:26577209 PMCid:PMC4650399

Ozdestan, O. y Uren, A. (2010). Biogenic amine content of kefir: A fermented dairy product. European Food Research and Technology, 231 (1), pp. 101-107. https://doi.org/10.1007/s00217-010-1258-y

Pérez, M., Calles-Enríquez, M., Nes, I., Mar­tín, M. C., Fernández, M., Ladero, V. y Ál­varez, M. A. (2015). Tyramine biosynthe­sis is transcriptionally induced at low pH and improves the fitness of Entero­coccus faecalis in acidic environments. Applied Microbiology and Biotechnolo­gy, 99 (8), pp. 3547-3558. https://doi.org/10.1007/s00253-014-6301-7 PMid:25529314

Pérez, M., Ladero, V., Río, B. del, Redruello, B., Jong, A. de, Kuipers, O., Kok, J., Mar­tín, M. C., Fernández, M. y Álvarez, M. A. (2017). The relationship among tyrosine decarboxylase and agmatine deiminase pathways in Enterococcus faecalis. Fron­tiers in Microbiology, 8, 2107. https://doi.org/10.3389/fmicb.2017.02107 PMid:29163401 PMCid:PMC5672081

Pinho, O., Pintado, A. I. E., Gomes, A. M. P., Pintado, M. M. E., Malcata, F. X. y Ferreira, I. M. (2004). Interrelations­hips among microbiological, physico­chemical, and biochemical properties of Terrincho cheese, with emphasis on biogenic amines. Journal of Food Pro­tection, 67 (12), pp. 2779-2785. https://doi.org/10.4315/0362-028X-67.12.2779 PMid:15633686

Podeur, G., Dalgaard, P., Leroi, F., Prevost, H., Emborg, J., Martinussen, J., Hansen, L. H. y Pilet, M. F. (2015). Development of a real-time PCR method coupled with a selective pre-enrichment step for quantification of Morganella mor­ganii and Morganella psychrotolerans in fish products. International Journal of Food Microbiology, 203, pp. 55-62. https://doi.org/10.1016/j.ijfoodmicro.2015.03.005 PMid:25791250

Redruello, B., Ladero, V., Cuesta, I., Álvarez- Buylla, J. R., Martín, M. C., Fernández, M. y Álvarez, M. A. (2013). A fast, re­liable, ultra high performance liquid chromatography method for the simul­taneous determination of amino acids, biogenic amines and ammonium ions in cheese, using diethyl ethoxymethyle­nemalonate as a derivatising agent. Food Chemistry, 139 (1-4), pp. 1029- 1035. https://doi.org/10.1016/j.foodchem.2013.01.071 PMid:23561206

Redruello, B., Ladero, V., Río, B. del, Fernán­dez, M., Martín, M. C. y Álvarez, M. A. (2016). Data on recovery of 21 amino acids, 9 biogenic amines and ammonium ions after spiking four different beers with five concentrations of these analytes. Data in Brief, 9, pp. 398-400. https://doi.org/10.1016/j.dib.2016.09.011 PMid:27689128 PMCid:PMC5035235

Río, B. del, Binetti, A. G., Martín, M. C., Fernández, M., Magadan, A. H. y Álva­rez, M. A. (2007). Multiplex PCR for the detection and identification of dairy bacteriophages in milk. Food Micro­biology, 24 (1), pp. 75-81. https://doi.org/10.1016/j.fm.2006.03.001 PMid:16943097

Río, B. del, Redruello, B., Linares, D. M., La­dero, V., Fernández, M., Martín, M. C., Ruas-Madiedo, P. y Álvarez, M. A. (2017). The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture. Food Chemistry, 218, pp. 249-255. https://doi.org/10.1016/j.foodchem.2016.09.046 PMid:27719906

Río, B. del, Redruello, B., Linares, D. M., La­dero, V., Ruas-Madiedo, P., Fernández, M., Martín, M. C. y Álvarez, M. A. (2019). The biogenic amines putrescine and ca­daverine show in vitro cytotoxicity at con­centrations that can be found in foods. Scientific Reports, 9 (1), e120. https://doi.org/10.1038/s41598-018-36239-w PMid:30644398 PMCid:PMC6333923

Río, B. del, Redruello, B., Martín, M. C., Fernández, M., Jong, A. de, Kuipers, O. P., Ladero, V. y Álvarez, M. A. (2016). Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine. Genomics Data, 7, pp. 112-114. https://doi.org/10.1016/j.gdata.2015.12.003 PMid:26981381 PMCid:PMC4778615

Rivas, B. de las, Marcobal, A., Carrascosa, A. V. y Muñoz, R. (2006). PCR detection of foodborne bacteria producing the biogenic amines histamine, tyramine, putrescine, and cadaverine. Journal of Food Protection, 69 (10), pp. 2509-2514. https://doi.org/10.4315/0362-028X-69.10.2509 PMid:17066936

Rivas, B. de las, Marcobal, A. y Muñoz, R. (2005). Improved multiplex-PCR method for the simultaneous detec­tion of food bacteria producing bio­genic amines. FEMS Microbiology Let­ters, 244 (2), pp. 367-372. https://doi.org/10.1016/j.femsle.2005.02.012 PMid:15766792

Romano, A., Ladero, V., Álvarez, M. A. y Lucas, P. M. (2014). Putrescine pro­duction via the ornithine decarboxyla­tion pathway improves the acid stress survival of Lactobacillus brevis and is part of a horizontally transferred acid resistance locus. International Journal of Food Microbiology, 175, pp. 14-19. https://doi.org/10.1016/j.ijfoodmicro.2014.01.009 PMid:24495587

Romano, A., Trip, H., Lolkema, J. S. y Lucas, P. M. (2013). Three-component lysine/ ornithine decarboxylation system in Lactobacillus saerimneri 30a. Journal of Bacteriology, 195 (6), pp. 1249-1254. https://doi.org/10.1128/JB.02070-12 PMid:23316036 PMCid:PMC3592000

Shukla, S., Park, H. K., Kim, J. K. y Kim, M. (2010). Determination of biogenic amines in Korean traditional fermented soybean paste (Doenjang). Food and Chemical To­xicology, 48 (5), pp. 1191-1195. https://doi.org/10.1016/j.fct.2010.01.034 PMid:20146930

Silla Santos, M. H. (1996). Biogenic ami­nes: their importance in foods. Inter­national Journal of Food Microbiolo­gy, 29 (2-3), pp. 213-231. https://doi.org/10.1016/0168-1605(95)00032-1

Smidt, O. de (2016). The use of PCR-DGGE to determine bacterial fingerprints for poul­try and red meat abattoir effluent. Letters in Applied Microbiology, 62 (1), pp. 1-8. https://doi.org/10.1111/lam.12505 PMid:26440561

Taylor, S. L. y World Health Organization (1985). Histamine poisoning associated with fish, cheese and other foods. Report VPH/FOS/85.1. WorldHealth Organiza­tion. [En línea]. Disponible en https:// apps.who.int/iris/handle/10665/66407

ten Brink, B., Damink, C., Joosten, H. M. y Tveld, J. H. (1990). Occurrence and for­mation of biologically-active amines in foods. International Journal of Food Mi­crobiology, 11 (1), pp. 73-84. https://doi.org/10.1016/0168-1605(90)90040-C

Torriani, S., Gatto, V., Sembeni, S., Tofalo, R., Suzzi, G., Belletti, N., Gardini, F. y Bover-Cid, S. (2008). Rapid detection and quantification of tyrosine decar­boxylase gene (tdc) and its expression in gram-positive bacteria associated with fermented foods using PCR-ba­sed methods. Journal of Food Protec­tion, 71, (1), pp. 93-101. https://doi.org/10.4315/0362-028X-71.1.93 PMid:18236668

Trip, H., Mulder, N. L., Rattray, F. P. y Lolkema, J. S. (2011). HdcB, a novel enzyme cataly­sing maturation of pyruvoyl-dependent histidine decarboxylase. Molecular Micro­biology, 79 (4), pp. 861-871. https://doi.org/10.1111/j.1365-2958.2010.07492.x PMid:21208300

Walsh, A. M., Crispie, F., Claesson, M .J. y Cotter, P. D. (2017). Translating omics to food microbiology. Annual Reviews in Food Science and Technology, 8, pp. 113-134. https://doi.org/10.1146/annurev-food-030216-025729 PMid:28125344

Wuthrich, D., Berthoud, H., Wechsler, D., Eugster, E., Irmler, S. y Bruggmann, R. (2017). The histidine decarboxylase gene cluster of Lactobacillus parabuchneri was gained by horizontal gene transfer and is mobile within the species. Fron­tiers in Microbiology, 8, 218. https://doi.org/10.3389/fmicb.2017.00218 PMid:28261177 PMCid:PMC5313534

Yongsawatdigul, J., Choi, Y. J. y Udomporn, S. (2004). Biogenic amines formation in fish sauce prepared from fresh and temperature- abused Indianan chovy (Stolepho rusindicus). Journal of Food Science, 69 (4), pp. 312-319. https://doi.org/10.1111/j.1365-2621.2004.tb06333.x

Recursos en línea

Scombrotoxin (histamine) formation. [En línea]. Disponible en https://www.fda.gov/media/80248/download

Publicado

2020-03-30

Cómo citar

del Río, B., Redruello, B., Fernández, M., Ladero, V., & Álvarez, M. A. (2020). Aminas biógenas en alimentos: métodos moleculares para la detección e identificación de bacterias productoras. Arbor, 196(795), a545. https://doi.org/10.3989/arbor.2020.795n1009

Número

Sección

Artículos