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RESUMEN: La biología se ha convertido en la nueva “física” de las 
matemáticas, una de las áreas con mayores aplicaciones. Las matemá-
ticas, por su parte, han proporcionado herramientas y metáforas muy 
poderosas para abordar la increíble complejidad de los sistemas bioló-
gicos. Esto ha permitido la génesis de marcos conceptuales sólidos. En 
este artículo resumo algunas de las aplicaciones más exitosas de las 
matemáticas a la biología que van desde la genética de poblaciones a 
la biología del desarrollo y las redes de interacciones ecológicas.

PALABRAS CLAVE: Formación de patrón, dinámica no-lineal, redes 
complejas, dinámica de poblaciones, genética de poblaciones, estruc-
tura de comunidades, desarrollo, epidemiología, biología teórica.

ABSTRACT: Biology has become the new “physics” of mathematics, 
one of the areas of greatest mathematical applications. In turn, ma-
thematics has provided powerful tools and metaphors to approach 
the astonishing complexity of biological systems. This has allowed 
the development of sound theoretical frameworks. Here, I summa-
rize some of the most significant contributions of mathematics to 
biology, ranging from population genetics, to developmental biolo-
gy, and to networks of species interactions.

KEY WORDS: Pattern formation, non-linear dynamics, complex 
networks, population dynamics, population genetics, community 
structure, development, epidemiology, theoretical biology.

Charles Darwin, the father of the modern theory of evolu-

tion through natural selection, once complained that “I have 

deeply regretted that I did not proceed far enough at least 

to understand something of the great leading principles of 

mathematics; for men thus endowed seem to have an extra 

sense.” While it is well appreciated the huge contribution of 

mathematics to physics, its role in biology is not so gener-

ally acknowledged. However, mathematics has been of para-

mount importance in the understanding of life sciences, and 

this importance will even increase in the near future. This es-

say provides an opinionated and biased appreciation of such a 

contribution from mathematics to biology and vice versa.

If physics was the battlefield where mathematics was meet-

ing the real world during the 19th century, biology became 

the area of greatest intellectual challenges and applications 

for mathematics in the 20th century. As nicely written by 

Joel E. Cohen, mathematics became to biology what the 

microscope represented a few centuries ago: a tool to ap-

proach and interpret a new and fascinating world. Certainly, 

it was not until the invention of the microscope in the late 

17th century when a world invisible to the naked eye was 

suddenly discovered. Similarly, mathematics is a way to de-

scribe complex systems. Think for example in the complexity 

of the human brain, with its huge number of neurons and 

interactions, or in the thousands of species in a tropical 

forest interacting in complex ways. Biology represents chal-

lenges into the complex, and math may help us to approach 

such a complexity. Mathematics represents a way to extract 

straightforward consequences of a series of assumptions: if 

x is assumed, then y is derived. This does not only allow us 

to think clearly, but to perform mathematical experiments 

in systems in which real experiments are impossible.

Arguably, the Hardy-Weinberg law in population genetics 

is equivalent with Newton’s First Law: if no force is ap-

plied into a population (e.g., natural selection, migration), 

the population will remain in a genetic equilibrium, that 

is, gene frequencies will not change in a population from 

one generation to another. Population genetics is one of 

the fields with a highest mathematical development. Partly 

this is due to the extraordinary long time scale in which 

evolutionary forces take place. It is impossible to observe 

changes in gene frequencies through time. Oftentimes, 

what we have is a temporal slice, and from these snapshots 

we are to infer a process. A rich mathematical develop-

ment by the fathers of the modern evolutionary synthesis 

allowed us to merge Darwin’s theory on natural selection 

with quantitative genetics. The resulting theory has been 

a fascinating intellectual contribution to understanding 
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what forces shape live in this planet and why there is so 

much genetic variation in nature. Mathematics has thus 

been the glue bringing together evolution and genetics.

Ecology has, to some extent, followed the track of popu-

lation genetics with some delay. Even when ecology has 

been mainly a descriptive science, the pioneering work by 

Lotka, Volterra, Nicholson, Bailey and others first intro-

duced mathematical representations of temporal changes 

in populations. Their models were based on either partial 

differential equations or equations in difference. While the 

former describe time as a continuous variable, the latter 

use discrete representations, e.g., number of generations. 

In any case, models of population ecology describe how a 

population changes though time as a function of its own 

density and/or the density of its predator, parasite, or a 

competing species. Even when these are just cartoons of 

reality, these population models were extremely impor-

tant in understanding complex real phenomena such as 

population cycles. By means of these models one could 

first explore mechanisms contributing to the stability of 

populations and communities.

Today, ecologist face the pressing needs arising from the 

accelerating human influence in the Biosphere. These 

needs require a predictive theory, the kind of theory that 

can guide us, for example, in understanding the conse-

quences of habitat loss and fragmentation on biodiversity. 

Here is one example of the type of understanding math-

ematics has provided to ecology. Habitat loss is the leading 

cause of biodiversity decline. However, we do not have a 

theoretical framework to predict its consequences on pop-

ulations and communities. Our intuition would tell us that 

we would still find a population, albeit of a shrinking size, 

as far as some fraction of the original habitat is left. These 

mathematical models, however, predicted that beyond a 

threshold of habitat destruction, the population goes ex-

tinct. At these critical values, populations and communi-

ties are at the edge of extinction: there is no relationship 

anymore between the intensity of a perturbation and the 

magnitude of its consequences. Two and two do no longer 

add four as Robert May once noted. Predicting these points 

of no return is very important in conservation.

A particular type of extremely simplified ecosystem is that 

composed by the interaction between viruses and the im-

mune system. Epidemiology has been another important 

field in biology where mathematics has allowed a rich 

conceptual development. Let’s consider, for example, the 

spread of smallpox within a human population. Epide-

miological models describe the temporal dynamics in the 

number of hosts infected and make predictions such as 

the existence of a critical population size beyond which 

the diseases fades away. Similarly, epidemiological models 

predict a critical fraction of hosts to be vaccinated for the 

eradication of the diseases. These thresholds are essentially 

identical to the extinction thresholds described above in 

the context of habitat loss. Thus, mathematics can guide 

the design of efficient vaccination programs.

A notorious example of virus is the HIV, the infectious 

agent causing AIDS. These RNA-based viruses mutate at 

an incredible rate to escape the immune system. This is the 

reason of their high success. The immune system evolves to 

recognize the exact nature of an invader and to counter-

balance it, but if the virus keeps changing, it escapes this 

defensive system. Mathematical models of distributions of 

virus strains called quasispecies have shown the existence 

of a mutation rate threshold. Beyond such a threshold, 

called catastrophe of error, an increase of the mutation 

rate induces the loss of the genetic information. It is like 

the phase transition separating liquid and solid states in 

physics. It represents the transition from sequences with 

biological information to random sequences. These fast 

mutating viruses are thus at the edge. The same bio-

logical process that has made them so elusive to classical 

epidemiological treatments such as vaccines can provide 

keys for their eradication. Just push a little bit forward its 

mutation rates and the virus will collapse. John Holland 

and colleagues have demonstrated experimentally this by 

using several mutants to increase the mutation rate of the 

vesicular stomatitis virus. As a result, the virus becomes 

non-infectious.

Developmental biology is another field in biology that has 

benefited from mathematics. How can the process leading 

from one cell to a complex embryo be explained from basic 

principles? This was a total mystery reflecting a complete 

divorce between the 19th century physics focusing on 

systems at thermodynamic equilibrium, and so showing 

temporal evolutions towards disorder, and the dynamics 

towards increasing order and complexity characteristic of 

life. The great mathematician Alan Turing provided the first 

theoretical approximation to solve this apparent paradox. 
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Turing is famous for at least two other contributions, 

namely inventing the Turing machine, i.e., the precursor 

of modern computers, and breaking the Enigma code used 

by the German Nazis to encrypt communications during 

the Second World War. After these two previous contri-

butions, Turing had the brilliant idea in 1952 of writing 

down a mathematical model describing the dynamics of 

two chemical species called morphogens. The rules are as 

follows. First, one morphogen called activator produces it-

self at a rate proportional to its abundance. This is a type of 

multiplicative, non-linear process very common in biology: 

the more activator, the faster is produced. Second, the ac-

tivator also produces a second morphogen called inhibitor, 

which in turn inhibits the former. Third, both activator and 

inhibitor diffuse through space, although the inhibitor does 

it at a faster rate. In summary, the system is described by 

local production and long-range inhibition. Turing showed 

that starting from a uniform spatial distribution of both 

morphogens, some random fluctuations will be amplified. 

At the end, there will be patches with a high concentra-

tion of activator surrounded by empty areas. We have gone 

from a homogeneous distribution to a heterogeneous one. 

Imagine that this heterogeneous distribution of activator 

determines the formation of a head on one extreme, where 

the concentration of activator is beyond the average, and a 

tail on the other side, where the activator’s concentration 

is below the average. Symmetry has been broken though 

a bifurcation of the homogeneous solution. Structure has 

appeared. The size of the spatial domain in which these 

morphogens diffuse determines how many such bifurca-

tions can be accommodated.

Elegant extensions of the Turing model have been pro-

posed to explain multiple examples of pattern formation 

in development such as the pigmentation in the coat of 

some mammals. The great developmental biologist Pere 

Alberch, in collaboration with George Oster, James Murray, 

and others, used this type of mathematical formulation in 

combination with beautiful experiments in which the size 

of an amphibian extremity could be manipulated trough 

mutagens. As this size was progressively decreased, skel-

etal elements were deleted in a sequential order, mirroring 

natural variation in related species. Alberch and colleagues 

were able to show that evolution takes place through 

minor changes of a conserved developmental program. 

Self-organization plays a very important role that cannot 

be anticipated by focusing exclusively on genes. These self-

organizing spatial patterns show discrete bifurcations fol-

lowing a well-defined sequence, and so natural selection 

has only a limited set of possibilities to choose from.

It seems through this brief description that the flow of 

ideas has always gone from mathematics to biology. Al-

though this is the case in the majority of examples, there 

are also some cases in which the influence is the other way 

around. That is, biology has also made a contribution to 

mathematics. An illustrative case is that of deterministic 

chaos. This mathematical theory challenged a solid as-

sumption arising from the Newtonian paradigm. Certainly, 

Newtonian mechanics had represented a triumph of sci-

ence. Newton’s laws were able to describe the dynam-

ics of celestial bodies and, more spectacularly, to make 

powerful predictions. Given an individual condition, let’s 

say the position and speed of a comet right now, and the 

deterministic law of gravity, one can predict the position 

of such a comet 100 or 1,000 years from now. Or in the 

past, because for that matter the system is reversible, one 

can move the tape recorder either backwards or forwards. 

Newton started a new way to deal with nature in which 

deviations from what should be expected could be used 

to make specific claims. An example was the prediction of 

the planet Neptune on the basis of the modification of the 

gravitational field of the other planets. Newton’s contribu-

tion was so important, that Alexander Pope proposed the 

following epitaph for Newton, who died in 1727: “Nature 

and nature’s laws lay hid in night: God said, let Newton 

be! And all was light.” One can argue who has been the 

second most important scientist in history, but the first 

position undoubtedly belongs to Isaac Newton.

In the previous scheme, however, there is a small caveat: 

we cannot know perfectly an initial condition. The atmos-

pheric temperature at a place and a time, for example, is 

a number with infinite decimal points. What we do is to 

round this number. Let’s say we take five decimal points. 

This extremely small mistake remains small in systems 

like the ones studied by Newton. Thus, if the arrival of 

the comet after 1,000 years is predicted with an error of 

five decimal points, nobody would claim the theory is not 

good. In this type of systems, small errors remain small 

through time. This is because these are linear systems, that 

is, systems in which variables add one to another. How-

ever, lots of interesting systems such as the weather and 

biological systems are non-linear. In this case, variables 
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do not add but multiply each other or are raised to an 

exponent. The consequence of this is that errors now will 

not remain small. They will grow exponentially through 

time. The paradigmatic example is weather prediction. It 

is not that scientists do not understand the dynamics of 

fluids. They do so as well as they understand Newton’s 

laws. The problem is that weather is described by non-

linear equations. A very small mistake after, let’s say 10 

days, will become so large that prediction just does not 

work for long temporal windows. It is no longer true that 

knowledge implies prediction. The temporal dynamics of 

systems like weather show random-like behavior similar to 

what we would expect for a stochastic system, but they 

are generated by totally deterministic systems described 

by a small number of variables. This behavior was named 

deterministic chaos.

There were several contributions to the mathematics of 

deterministic chaos. Some were certainly done by math-

ematicians, but others by climatologists such as Edward 

Lorenz, and by the theoretical ecologists Robert May. 

Lorenz was working on a simplified model of weather 

and found that after running a simulation a second time 

he obtained a different output. Since his system of three 

differential equations was absolutely deterministic, he 

thought he had made a mistake. Finally he realized there 

was a tiny difference in the two initial conditions. He had 

encountered deterministic chaos and its strong depend-

ence on initial conditions.

Robert May, trained as a physicist, shifted to population 

biology and become one of the leading theoreticians in 

ecology and epidemiology. May co-discovered chaos by 

studying a simple, deterministic model of an ecological 

population. It was a difference equation or logistic map. 

The simplest model one can conceive in population ecol-

ogy. It deterministically specifies the population density at 

the next generation given the population density at the 

current generation. May iterated the model starting from 

a given population density. The behavior of this model was 

found to be very dependent on the value of the growth 

rate, a measure of per-capita fertility. For low growth 

rates, the population evolves towards a constant value, 

what mathematicians would call a steady state. Once the 

population reaches this value, nothing else happens. No 

big surprise so far: a simple model shows a simple behav-

ior. If now we slightly increase the growth rate, the model 

evolves towards period-two cycles. Now the population 

will repeat itself every other generation. Although some-

thing more interesting than before, this is still a simple 

behavior. If this parameter is further increased, cycles with 

higher periods (4, 8, 16,...) arise until a specific growth rate 

is reached. Now the population fluctuates without an ap-

parent pattern. It never repeats itself. This is deterministic 

chaos.

May’s work inspired mathematicians who developed a 

theory about the existence of some universal properties 

of deterministic chaos. The type of period-doubling route 

to chaos May had found for his logistic map, was proved 

to be absolutely general. Similar non-linear models and ex-

perimental systems were found to have the same proper-

ties. In this case, an important mathematical contribution 

was originated from the domain of ecology.

The mathematics of deterministic chaos embraces one 

type of biological complexity: dynamic complexity. An-

other source of complexity in biological systems has to 

do with their large number of interacting elements. We 

already mentioned the examples of the human brain and 

the food webs, graphical depictions of who eats whom in 

an ecological community. These highly complex systems 

have eluded analytical tractability. A branch of mathemat-

ics analyzes graphs described by nodes linked by edges. 

This framework is currently quite popular, and finds im-

portant applications both in biology and in other fields. 

In biology, the study of networks of genetic interactions 

opens the path towards a better understanding of gene 

regulation and the treatment of some genetic disorders. 

In ecology, considering the network of species interactions 

provides a community-wide approximation to the spread-

ing of human-induced perturbations such as overfishing. 

New generation computers, with an increasing power 

can eventually simulate the dynamics of these extremely 

rich systems. Computer software based on mathematical 

algorithms has also been used to represent complex data 

such as the human genome. A full genome is like a text 

with millions of letters, and one cannot just plot this huge 

amount of gross information. To have a chance to visualize 

this and seek patterns, one needs intelligent software.

Mathematics, in sum, provides useful approximations to 

the real world. This has the advantage of controlling all 

confounding factors, isolating the interesting variables, 
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and allowing to perform experiments we would not be 

able to do in nature. And this exercise can ultimately shed 

some light into the complexities of biological systems. 

Simple models are the “perfect crystals” of biology, a kind 

of benchmark or reference where one can get straight-

forward insight. As we walk through the challenging 

complexities of brain dynamics or the consequences of 

global change on ecological communities, mathematics 

will become an even more powerful language to speak 

about life.
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Figure 1. Simple lattice models of interacting populations 
create self-organizing spatial patterns such as these traveling 
waves. These spatial models are based on local non-linear 
dynamics and dispersal to nearby patches. The f igure 
represents a snapshot for a specif ic time step; the shadow 
of each spatial cell represents the density of one of the 
populations

Figure 2. The architecture of biodiversity. Species within an 
ecosystem form complex networks of dependency which architecture 
largely determines the robustness of these communities to 
perturbations. The figure represents a pollination community in 
the Arctic. Bottom and top nodes represent plant and insect species, 
respectively. A link between a plant-animal pair indicates that the 
latter pollinates the former


