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RESUMEN: En esta nota repasamos algunos modelos basados en 
individuos para describir el movimiento colectivo de agentes, a lo 
que nos referimos usando la voz inglesa swarming. Estos modelos se 
basan en EDOs (ecuaciones diferenciales ordinarias) y muestran un 
comportamiento asintótico complejo y rico en patrones, que mostra-
mos numéricamente. Además, comentamos cómo se conectan estos 
modelos de partículas con las ecuaciones en derivadas parciales para 
describir la evolución de densidades de individuos de forma continua. 
Las cuestiones matemáticas relacionadas con la estabilidad de de es-
tos modelos de EDP's (ecuaciones en derivadas parciales) despiertan 
gran interés en la investigación en biología matemática. 

PALABRAS CLAVE: Swarming, movimiento colectivo, modelos basa-
dos en individuos, formación de patrones, límite de campo medio, teoría 
cinética.

ABSTRACT: In this short note we review some of the individual 
based models of the collective motion of agents, called swarming. 
These models based on ODEs (ordinary differential equations)  ex-
hibit a complex rich asymptotic behavior in terms of patterns, that 
we show numerically. Moreover, we comment on how these particle 
models are connected to partial differential equations to describe 
the evolution of densities of individuals in a continuum manner. 
The mathematical questions behind the stability issues of these 
PDE (partial differential equations) models are questions of actual 
interest in mathematical biology research.

 
KEY WORDS: Swarming, individual-based models, pattern forma-
tion, mean-field limits, kinetic theory.

1.  Introduction

Self-organization without the presence of a leader is a 
common feature in the collective behavior of certain ani-
mals: insects (locusts, ants, ...), fish, birds (in particular, 
starlings [8, 35, 2]) and some microorganisms such as 
myxobacteria [28]. The variety and astonishing behavior 
of the aggregate patterns formed by groups of individuals 
is inspiring as well as attractive to scientists for deeper 
explanations. The biological reasons [35] of the group-
ing include, among others: protection against a preda-
tor, spawning migrations, energy savings due to flying or 
swimming in an ensemble, and food finding. It is well-
known that effects such as pheromone trails for ants may 
produce very sophisticated behavior which can be very 

efficient, as in this case, at finding food, and is the result 
of the individual behavior of each ant, with no organiza-
tion decided by any particular ant [6].

There have been some attempts to give mathematical 
models of collective motion, based on reasonable assump-
tions about the behavior of each individual, and which can 
reproduce the observed phenomena. Many of the models 
naturally involve some kind of evolution equation for the 
position, velocity, and possibly other characteristics, of in-
dividuals, be it in the form of a set of ordinary differential 
equations or a set of difference equations for the values of 
these quantities at certain discrete times [43, 20, 14, 46]. 
Such models are usually referred to as Individual-Based 
Models (IBMs). They follow many different strategies; for 
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instance, one can try to give rules for the movement of 
each particular individual which are as realistic as pos-
sible. These rules then can become mathematically very 
complicated, and thus often the only way to understand 
the evolution of the model is to solve it numerically with a 
computer. One can then compare the result to the known 
behavior of real individuals, as has been done for exam-
ple in [26] for starlings, using real data provided in [2], 
or in [24, 25, 4] for fishes, and possibly obtain a better 
understanding of the causes of the actual behavior of the 
animals under study.

One can also extract the basic features of the above models 
and try to understand the emergence of collective behavior 
from simpler models which lend themselves to a deeper 
mathematical study. While this is admittedly further away 
from the experimental explanation of the behavior of ani-
mals, it has the advantage that in some cases one is able 
to understand much better the behavior of the model, and 
identify the role that each effect plays. There are relatively 
simple models which pose very interesting mathematical 
questions, sometimes leading to problems in dynamical 
systems or kinetic equations which can benefit from exist-
ing techniques, which are interesting by themselves, and 
which may find applications in fields other than animal 
behavior (see below). Hence, the study of animal behavior 
suggests intriguing directions of research in mathematics; 
and conversely, a basic understanding of simple effects can 
give a valuable insight in the design of more complicated 
models that one cannot expect to be able to handle theo-
retically at present.

Here, we will be concerned with models which give 
the evolution of a set of individuals through a certain 
number of effects. Most of them include alignment or 
orientation effects, possibly involving some randomness. 
The self-organization of agents described by IBMs when 
self-propelling forces and pairwise attractive and repul-
sive interactions are considered was described in [34, 31, 
18]. The classification, in terms of particular strengths of 
interaction and propulsion, of the morphology of patterns 
obtained includes: translationally invariant flocks, rotating 
single and double mills, rings and clumps, patterns that 
we will show later.

Flocking patterns have also been shown in models of align-
ment or orientation averaging in [16, 17]. All these models 

share the objective of pinpointing the minimal effects or 
interactions leading to certain particular type of pattern 
or collective motion of the agents. These IBMs can be 
considered also as "particle" models in the optic of treat-
ing agents or animals as point particles in a physics-based 
description as in statistical mechanics. Let us also men-
tion that this issue has also received attention from the 
control engineering viewpoint trying to reproduce these 
self-organization patterns with artificial robots or devices, 
see [12, 16, 36] and the references therein, with the aim of 
controlling unmanned vehicle operation. Finally, the com-
bination of these minimal bricks in the modeling such as 
interaction, alignment and orientation with other effects 
is leading to rich complex behavior and detailed dynamical 
systems models for particular species, see for instance [5, 
4, 25, 2, 26, 6, 46].

In some of the applications above, IBMs are enough to 
describe the system under reasonable number of indi-
viduals/agents N. However, if the number is large as in 
migration of fish [47] or in myxobacteria [35, 28], the 
use of continuum models for the evolution of a density 
of individuals is convenient for numerical simulation, and 
even necessary. Some continuum models in the literature 
[41, 42, 7] include attraction-repulsion mechanisms and 
spatial diffusion to deal with random effects. Other con-
tinuum models are based on hydrodynamic descriptions 
[13, 10] derived from mean-field particle limits. In fact, as 
usually done in statistical physics, there is a middle ground 
in modeling between particle and hydrodynamic descrip-
tions given by the mesoscopic kinetic equations describing 
the probability of finding particles in phase space. Kinetic 
models of swarming has recently been proposed [22, 10, 
11] and the connection between the above IBMs and the 
continuum models via kinetic theory has been tackled very 
recently in [21, 10, 9]. The interest of the kinetic theory 
models is to give a rigorous tool to connect IBMs and 
hydrodynamic descriptions as well as to interpret certain 
patterns as solutions of a given model, as in the case of 
the double mills [10]. The analysis, numerical description 
of the complex behavior of these kinetic and hydrodynamic 
models and patterns stability are some of the open ques-
tions in this research direction.

Below we will focus on a review of certain IBMs for swarm-
ing proposed in the literature, including some of the basic 
effects above: attraction, repulsion and orientation. We 
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will describe these particle models and explain some of 
their features and basic properties in terms of asymptotic 
patterns in Section 2. Subsection 2.3 is devoted to a nice 
short proof of flocking for the Cucker-Smale model and its 
variants, and finally Section 3 shows some of the numeri-
cal results and open questions regarding these asymptotic 
patterns for the continuum models.

2.  Individual-Based Models

Most of the basic IBMs of collective behavior or swarm-
ing consider the so-called three-zone models, meaning 
that each individual is influenced in a different way by 
other individuals depending on their relative position, and 
distinguishing three different zones; see Figure 1.

orientation or alignment zone, takes into account the proc-
ess of mimicking other individual's behavior by trying to 
match the velocity of others, for instance with the oth-
ers in that region. The outer region models the effect of 
inherent socialization of the animals since they want to 
be not too far from other individuals in that region. The 
strength, particularities and details of these different ef-
fects depends on the distance, and on the number of other 
individuals located at each moment in the different zones; 
hence the direction of the individual will be changed ac-
cording to some weighted superposition of these effects. 
The “attraction”, “repulsion” and “velocity mimicking” are 
loosely stated here and can take a wide range of forms. 
This modeling based on social forces finds its roots in the 
works of [1, 27] for fish schooling and it has been widely 
used, expanded, and improved by theoretical biologists, 
physicists and applied mathematicians; see [15, 34, 29, 24, 
30, 44, 45, 3, 31, 32, 19] and the references therein. This 
approach has been made much more specific for particular 
animals and species as in [5, 4, 47, 25] for fish (studying 
migration patterns for the capelin around Iceland) and in 
[2, 26] for birds (starlings grouping in Rome).

In this review, we concentrate mainly in these three ef-
fects as they constitute the main modeling “bricks”, but 
the reader should be warned, as we mentioned before, 
that in order to reproduce realistic swarming behavior as 
in the starlings [2] or the migration of fish [4], one has 
to include much more involved interactions. For instance, 
real three dimensional effects due to the aerodynamics of 
birds, in which drag, lift and friction forces are included, 
or roosting forces trying to model their tendency to stay 
close to certain home area as in [25]; or changes in move-
ment due to currents or temperature changes as in [4]. 
Other improvements in the modeling include detailed vi-
sion zones for the individuals, assuming for instance that 
birds only see in a certain vision cone which depends on 
their position and direction of motion.

In this paper we address particle models for describing 
mathematically these different effects. Despite their sim-
plicity, these models show how the combination of these 
simple rules can produce striking phenomena, such as 
pattern formations: flocks and single or double mills, re-
sembling those observed in nature.

Figure 1.  Three-zone model

The inner region, repulsion zone, models the “vital space” 
in which any individual has a tendency to avoid the pres-
ence of any other in the swarm, due to collision avoidance 
or just for sociological reasons. The intermediate region, 
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where ,C CA R  and ,A R, ,  are the strengths and the typical 
lengths of attraction and repulsion, respectively. This po-
tential is only Lipschitz due to its singularity at the origin 
but the qualitative behavior of the particle system does not 
heavily depend on this fact [18]. To analyze the limit of 
large number of particles N, and for simplicity, we scale the 
amplitude of the potential through a normalization which 
corresponds to assuming that all particles have mass 1/N.

The interesting particularity of this system is that it exhib-
its very different behavior depending on the values of the 
parameters. Let us have a look at some possibilities. Taking 
the values CR = 50, 2R, = , CA = 20, 100A, = , .05,b =  

.07a =  and solving numerically with some randomly cho-
sen initial conditions, we find that individuals arrange into 
a sort of swirl or mill, as this type of arrangement has been 
called in the literature (see Fig. 3). After some hesitation, 
they seem to always agree to turn in only one direction.

However, consider now CR = 50, 20R, = , CA  =  100, 
100A, = , .05,b =  .15a =  giving the results in Fig. 4. 

Though the kind of behavior seems initially alike, now we 
may have individuals turning in both directions: clockwise 
and counterclockwise. As we have reduced the relative 
strength of the short-range repulsion, it is no problem now 
for individuals to cross very close.

There are yet other possible patterns in which individuals 
tend to organize, depending on the value of the param-

2.1. � Asymptotic speed with attraction-repulsion 
interaction model

The particle model proposed in [18] reads as:

,

( ) ( ),

( , ..., )

( , ..., ) .

dt
dx v

dt
dv v v

N
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1
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where , Rx v 3
i i !  represent the position and velocity of the 

i-th individual, for i varying from 1 to the total number N 
of individuals. Here, a  and b  are nonnegative parameters 
and : R RU d

$  is a given potential encoding the short-
range repulsion and long-range attraction typical in these 
models. Here, the potential has been scaled depending 
on the number of particles as in [10], as it is convenient 
in order to study the limit of the system for large N. The 
term corresponding to a  models the self-propulsion of 
individuals, whereas the term corresponding to b  is the 
friction assumed to follow Rayleigh's law. The balance 
of these two terms imposes an asymptotic speed to the 
agent (if other effects are ignored), but does not influ-
ence the orientation vector. The main point here is that of 
having a “preferred” velocity /a b , and not the precise 
shape of the term involving a  and b . On the other hand, 
a typical choice for U is the Morse potential, a radial 
potential given by

( ) (| |) ( ) ,withU x k x k r C e C e/ /
A

r
R

rA R= =- +
, ,- -

Figure 2.  Mills in nature and the IBMs!
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Figure 3.  Formation of a single mill

eters. For instance, sometimes they organize in a kind of 
crystalline structure and they move translationally; this 
pattern is called flock. Identifying the tendency for each 
parameter seems difficult, and there are even some pa-
rameters for which one observes sometimes one type of 
organization, sometimes another one.

However, part of it can be analyzed, at least heuristically. 
In the case of the Morse potential, patterns of aggregation 
depend on the relative amplitudes C = CR/CA and /R A, , ,= , 
and the number of individuals N does not seem to affect 
the qualitative features of the observed patterns, so we 
may center the discussion on the values of C and .,

In two dimensions, the different patterns were classified 
in [18] using the concept of H-stability of potentials [37, 
40]. The most relevant set of parameters for biological ap-
plications concerns long-range attraction and short-range 
repulsion leading to C > 1 and ,  < 1. For these potentials, 
there exists a unique minimum of the pairwise potential 
and a typical distance minimizing the potential energy. 
What they remarked is that the behavior of the system 
(2.1) depends on whether the parameters are in the so-
called H-unstable or catastrophic region C d,   <  1, or in 
the H-stable region C 1d, $ , where d stands for the space 
dimension, equal to 2 in the numerical solutions shown 
in figures. This terminology for potentials comes from the 
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These shapes may contain some clue on the organization 
of animals in nature: while coherent flocks and single 
mill states are the most common patterns observed in 
biological swarms [35, 38], double-mill patterns, as seen 
in Figure 2, are also reported in the biological literature; 
for instance M. xanthus cells show distinct cell subpopula-
tions swarming in two opposite directions during part of 
their life cycle [28].

field of statistical mechanics. Complex behavior such as 
the formation of mills or double mills seems to happen 
only in the catastrophic region, while individuals seem to 
either form a swarm or just disperse in the stable region. 
There is also a difference between the catastrophic and 
stable regions in the size of “aggregates” (swarms or mills) 
as N grows. However, it does not seem easy to decide, in 
the catastrophic region, which parameters will produce 
swarms, mills, double mills, rings, or other patterns.

Figure 4.  Formation of a double mill
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with the communication rate w(x) given by:

(| |)
1 | |

1w w x x
x x 2ij i j

i j

= - =
+ -

c
^ h

for some g ≥  0. For this model, one would expect that 
individuals tend to adopt finally the same velocity and 
move translationally, as they change their velocity to adapt 
to that of others. This behavior is observed indeed by 
numerically solving the above equations, see Fig. 5, with 
g = 0.45.

After several improvements, it has been shown in [16, 17, 
22, 21, 11] that the asymptotic behavior of the system 

2.2.  The Cucker-Smale model

In the Cucker-Smale model, introduced in [16, 17], the only 
mechanism taken into account is the reorientation inter-
action between agents. Each agent in the swarm tries to 
mimic other individuals by adjusting/averaging their rela-
tive velocity with all the others. This averaging is weighted 
in such a way that closer individuals have a larger influ-
ence than further ones. For a system with N individuals the 
Cucker-Smale model, normalized as before, reads

,

,

dt
dx v

dt
dv

N
w v v1

i
i

i

j

N

ij j i
1

=

= -
=

] g
* /

Figure 5.  Formation of a non-universal flock
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our argument below can be carried out rigorously. We will 
show the proof for values of g < 1/2; improvements of this 
can be made following the steps in [11].

We prove that the concentration of the velocities around 
its mean value through a series of recurrent steps, in each 
of which the bounds we have for ( )R tx  and ( )R tv  are 
alternatively improved until we find an estimate for the 
concentration rate of the velocities. As a first step, we 
compute the derivative of ( )R tv 2  with respect to time, 
which gives us

( ) | ( ) | 2 ( ) | | 0,
dt
d R t

dt
d v t

N
w v v v v v2 2v

i ij

j i

i j i i j
p 2$ #= =- - -

!

-/

due to the choice of the label i, which ensures that (vi – vj) 
· vi  ≥ 0, for all j. Hence, Rv (t) is a non-increasing function. 
As a consequence, the distance between a particle and its 
original position can only grow linearly in time. Thus,

	 | ( ) ( ) | | ( ) ( ) | 2 ( 1),x t x t x t x x x t R t0 0
i j i i j j! !# #- - + 	(2.3)

where ( , )maxR R R0 0
x v

= . In turn, this implies that we have 
a lower bound for the weight:

	
1 | |

1
1 | 2 ( 1) |

1 .w
x x R t2 2ij

i j

$=
+ - + +

c c
^ ]h g

	 (2.4)

Now, using the bound on wij, we can extract more infor-
mation from the computation of the time derivative of 

( )R t 2v :

	
( ) | ( ) | ( ) | |

| ( ) |
( ) | | .

dt
d R t

dt
d v t

N
w v v v v v

N R t
v v v v v

2
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p

i j i i j
p
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!
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-
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/
/

At this point we need to be careful with the exponent 
p  –  2. Due to the choice of i, | | 2 | |v v vi j i#- , for all j. 
Then, if 0 < p ≤ 2, we obtain

( ) | |

| | ,

N
v v v v v

N
v v v v
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p
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p
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p
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$

$
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-
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for g ≤  1/2 does not depend on N; in this case, called 
unconditional non-universal flocking, the behavior of the 
population is perfectly specified: all the individuals tend to 
flock. “Flocking” here means that they end up moving with 
the same velocity, thus forming a group with fixed mutual 
distances, not necessarily in a crystalline-like pattern, but 
rather depending on the initial positions and velocities 
(actually, any set of individuals moving initially at the same 
speed will continue to do so indefinitely regardless of their 
initial positions). On the other hand, in the regime g > 1/2, 
flocking can be expected under certain conditions on the 
initial configuration but there are counterexamples to the 
generic flocking [16]. We refer to [16, 17, 11] for further 
discussion about this model and its qualitative properties, 
but we do present now a short proof of the flocking be-
havior when g ≤ 1/2.

2.3.  Alignment in the Cucker-Smale model

To see how the alignment comes up, instead of just con-
sidering the Cucker-Smale model, we may think of more 
general model in which the averaging takes into account 
the strength of the relative speed,

	
ij

,

| | ,

dt
dx v

dt
dv

N
w v v v v1

i
i

i

j

N

j i i j
p

1

2

=

= - -
=

-
] g

* /
	 (2.2)

with p > 0. This model reduces to the original Cucker-Smale 
model for p = 2. First of all let us point out some facts 
and set some notation that will be useful in the following 
discussion. Taking into account that these equations are 
invariant by translations, we can set the mean velocity of 
the system to zero without loss of generality. In this way, 
the center of mass, xc, will be preserved along the evolu-
tion. We fix 0R >0

x  and 0R >v
0  such that the particles are 

initially inside the ball ( , )B x R0c
x , and the initial velocities 

are in (0, )B R0
v . Also, we define the function

( ) | ( ) | .maxR t v t1
v

i N i= # #

At any time t, we can choose an index i such that 
( ) | ( ) |R t v tv i= . Note that since we are dealing with a fi-

nite number of particles and the curves are smooth, ( )R tv

is differentiable except possibly on a set of measure 0, and 
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in finite time. On the other hand, for p > 2, the exponent 
(2 – p)–1 is negative, Rv(t)  0 algebraically as t  ∞, and 
the concentration in velocity holds in infinite time.

Once a concentration in velocity has been established, 
we can improve the bound on the positions to show that 
| ( ) ( ) |x t x ti j-  remains uniformly bounded in time. For 
0 < p < 2, if we define f (t)  0 for t ≥ T we have that

| ( ) ( ) | | ( ) |

| ( ) | | ( ) | .

x t x f s ds

f s ds f s ds TR

0i i

t

T
v

0

0 0

0

#

# #

-

=
3

#
# #

On the other hand, for 2 < p < 4, f (t) behaves like W (t)1/(2-p) as 
t  ∞. In order for f (t) to be integrable in time up to infin-
ity, we assume further that 2 < p < 3 – 2g < 4. Proceeding 
as in (2.3) and (2.4), for 0 <  p < 2 and 2 <  p < 3 – 2g, 
we have a uniform in time bound on | ( ) ( ) |x t x ti j-  and a 
uniform bound from below in 0w W >0ij $ .

Finally, we use again the computation of the derivative of 
Rv (t)2 to finally get

	 ( ) ( )
2

2
R t R

p
C W t0

2
0

2
1

v v p
p

p

# +
-- -

; E 	 (2.6)

for all 0 < p < 2 and 2 < p < 3–2g.

Summarizing, we have shown that for this modified ver-
sion of the Cucker-Smale model, the flocking behavior 
happens in a finite time for 0 < p < 2 and 0 < g < 1/2 and 
with an algebraic speed if 2 < p < 3-2g in contrast with the 
exponential speed obtained for the standard Cucker-Smale 
model with p = 2 and 0 < g < 1/2. This can be checked 
numerically as seen in Fig. 6 for different values of p. It is 
an open problem to check if these limits for the parameter 
p and g when p > 2 are sharp for the flocking pattern to 
appear for generic initial data.

since we have set the mean velocity to zero the second 
term in the right hand side of the equation disappears. 
Then we get

( ) 2 ( ) ( ) ,
dt
d R t w t R t2 1v p v p#- -

where we have set ( ): 1 | 2 ( 1) |w t R t 2
= + +

c-
] g . In case 

2 < p < 4, we can estimate it from below as

( ) | |

( ) ( ) | | ,

v v v v v

v v v v v v2

i j i i j
p

j i

i
p

i j i i j

j i

2

4 2

$

$

$

$

- -

- -

!

!

-

-

/
/

and expanding | |v vi j
2

- , we get

( ) | | | | .v v v v v vi j i i j

j i

i

j N

2 4

1

$ $- -
! # #

/ /

Summarizing, we have that for any 0 < p < 4

( ) ( ) ( ) ,
dt
d R t C w t R t2v

p
v p#-

and integrating with respect to time we obtain, for p < 2 
and 2 < p < 4,

	 ( ) ( )
2

2
( ) : ( )R t R

p
C W t f t0

2 2
1

v v p
p

p

# +
-

=- -
; E 	 (2.5)

where ( ): ( ) .W t w s ds
0

t

= #  This result can be extended by 
using a slightly more delicate argument to any p > 2, but 
since the next steps will require a stronger assumption 
on p than p < 4, used at this point, we omit it here. The 
case p = 2 needs a separate treatment to show that Rv(t) 
is exponentially decreasing. These details can be found in 
[11] by the interested reader, here we will only report the 
details for the case p ≠ 2. Coming again to (2.5), we notice 
that W (t) is an increasing function of time and for 

2
1<c  

it diverges as t  ∞. Thus, for p < 2 there exists T < ∞ 
such that Rv(T) = 0, so the concentration in velocity holds 
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als with random initial conditions, we observe numerically 
that no matter how we start, they seem to end up ar-
ranging themselves in a group-like fashion in a crystalline 
structure, and moving in some direction at the preferred 
speed /a b , see Fig. 7.

3. S ome open questions

Very few of the observed features of the above behav-
ior can be actually proved in a rigorous way. Apart from 
the asymptotic convergence to the mean velocity of the 
Cucker-Smale model, we do not have a way to distin-
guish the values of the parameters in the system (2.1) for 
which one behavior or other takes place, and we do not 
know how to prove the convergence to a swarm, a mill 
or other kind of organization. A feasible way of studying 
these problems may be the following: one can consider, 
instead of the system (2.1) or (2.7), a partial differential 
equation which is obtained as its mean-field limit; this is 
an evolution equation whose solutions are approximated 

2.4.  3-Zone model

Let us consider now the model with attraction, repulsion, 
and Cucker-Smale effects included, which can then be 
properly called a “three-zone model” with three zones 
which are not at all disjoint:

,

(| |) ,

( , ..., )

( , ..., ) .

dt
dx v

dt
dv

N
U x x

N
w v v

i N

i N1 1

1

1

i
i

i
i j

j i

ij j i

j i

=

=- - + -

=

=
! !

] g

Z

[

\

]]

] / /
  (2.7)

How does the asymptotic behavior of this model look like? 
Individuals tend to eventually adopt the same velocity due 
to the Cucker-Smale effect, as in section 2.2. They also try 
to arrange into some group, due to the potential interac-
tion. The result is that they tend to an arrangement which 
should be a local minimum of the potential energy, but this 
does not seem obvious at all to prove. For instance, if we 
take the values CR = 500, 2R, = , CA = 200, 100A, = , b =.1, 
a = .2, g = 0.45 and look at the system with 50 individu-

Figure 6.  Different convergence rates to the zero mean velocity, in log-scale, for nonlinear velocity-dependent Cucker-Smale models
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Figure 7.  Formation of a flock

by the evolution of the density of particles of the system 
(2.1) (or (2.7)) when the number of particles is very large 
[9]. Then, studying stationary states for this equation may 
be a simpler task than directly studying (2.7). For example, 
the partial differential equation obtained as a limit when 
N " 3  of the system (2.7) is

	 (( * ) ) (( * ) ) 0,div divf v f U f H f ft x v v$2 td d+ + + = 	(3.8)

where f  =  f  (t,  x,  v) represents the density of individuals 
at time t in an infinitesimal region dx dv, r = r  (t, x) is 
the macroscopic density of individuals at time t obtained 
from f by integration on v, the first convolution is in the x 

variable, and the second one in both the x, v variables [9]. 
The function H is given by

( , )
(1 | | )

( , \ ) .H x v
x

v x v R
2

2!=
+

c

“Flocking” solutions of the system (2.7) (solutions for 
which every individual moves at the same fixed velocity 
v0) correspond to solutions of (3.8) of the form

	 ( , , ) ( ) ( ),f t x v x v t v v0 0t d= - - 	 (3.9)

where d is the Dirac delta function. These are solutions 
which have a constant mass profile r, and in which every 
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stable, or “catastrophic”, the flocks seem numerically to 
converge to an asymptotic distribution as we add more 
and more particles. As shown in Table 1 and in the 
first plot of Fig. 8, the maximum radius of the particles 
with respect to the center of mass tends to stabilize as 
t  ∞ and as N gets larger to a fixed value. Moreover, 
we have computed the normalized cumulative distribu-
tion of particles in the radial direction starting from the 
center of mass as we increase the number of particles 
N. The second plot in Fig. 8 shows numerical evidence 
of the convergence towards a fixed continuous profile 
as N gets larger.

The conjecture in this case is that there are continuous and 
compactly supported profiles r for which (3.9) is a solution 
of the kinetic equation, and that there are N-individual 
flocks whose density converges to r in the limit of N go-
ing to ∞. These problems are, to our knowledge, open for 
the moment, and they are also not particular to this field: 
they are more generally related to the shape of N-particle 
equilibria for a given potential U.

point moves at the same velocity v0. Can we find solutions 
like this?

Table 1.  Maximum distance of the particles to the center of mars 
with respect to the number of particles in the simulation

Particles 250 500 1000 2000 4000

Radius 16.5326 17.1331 17.4068 17.4016 17.5150

Looking for such a profile r turns out not to be a sim-
ple problem, and very little is known about it. We may 
restrict ourselves to looking for solutions with velocity 
v0 = 0, as all others are just translations in velocity of 
these. Then, if we look at the limiting shape of flocking 
solutions of the system (2.7), we see that the “flocks” 
tend to grow indefinitely with N when the potential is in 
the H-stable region; hence, in this case, the conjecture 
is that there are no nice (say, continuous and compactly 
supported) functions r for which (3.9) is a solution of 
(3.8). On the other hand, when the potential is not H-
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Figure 8.  Evolution with respect to time of the maximum radius and cumulative distribution of particles with respect to radius computed for 3 
different number of particles
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