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RESUMEN: La cuestión de la decidibilidad, es decir, si es posible de-
mostrar computacionalmente que una expresión matemática es 
verdadera o falsa, fue planteada por Hilbert y permaneció abierta 
hasta que Turing la respondió de forma negativa. Establecida la 
no-decidibilidad de las matemáticas, los esfuerzos en informática 
teórica se centraron en el estudio de la complejidad computacio-
nal de los problemas decidibles. En este artículo presentamos una 
breve introducción a las clases P (problemas resolubles en tiempo 
polinómico) y NP (problemas resolubles de manera no determinis-
ta en tiempo polinómico), al tiempo que exponemos la dificultad 
de establecer si P = NP y las consecuencias que se derivarían de 
que ambas clases de problemas fueran iguales. Esta cuestión tiene 
implicaciones no solo en los campos de la informática, las mate-
máticas y la física, sino también para la biología, la sociología y la 
economía. La idea seminal del estudio de la complejidad computa-
cional es consecuencia directa del modo en que Turing abordaba 
problemas en diferentes ámbitos mediante lo que hoy se denomi-
na la lupa algorítmica. El artículo finaliza con una breve exposición 
de algunos de los temas de investigación más actuales: transición 
de fase en problemas NP, y demostraciones holográficas, donde 
se trata de convencer a un adversario de que una demostración es 
correcta sin revelar ninguna idea de la demostración.

Palabras clave: Complejidad computacional; el problema 
de calcular la permanente de una matriz; problemas P y NP; 
demostraciones interactivas y holográficas.

ABSTRACT: The decidability question, i.e., whether any 
mathematical statement could be computationally proven 
true or false, was raised by Hilbert and remained open until 
Turing answered it in the negative. Then, most efforts in 
theoretical computer science turned to complexity theory 
and the need to classify decidable problems according to 
their difficulty. Among others, the classes P (problems 
solvable in polynomial time) and NP (problems solvable in 
non-deterministic polynomial time) were defined, and one 
of the most challenging scientific quests of our days arose: 
whether P = NP. This still open question has implications 
not only in computer science, mathematics and physics, but 
also in biology, sociology and economics, and it can be seen 
as a direct consequence of Turing’s way of looking through 
the algorithmic lens at different disciplines to discover how 
pervasive computation is.

Keywords: Computational complexity; the permanent 
problem; P and NP problems; Interactive proofs and holographic 
proofs.
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1. INTRODUCTION

The English mathematician Alan Mathison Turing 
(1912-1954) is well-known for his key role in the 
development of computer science, but he also 
made important contributions to the foundations 
of mathematics, numerical analysis, cryptography, 
quantum computing and biology. In the present 
paper we focus exclusively on the influence of 
Turing on computability and complexity theory, 
leaving aside other aspects of his work even within 
computer science, most notably his contribution 
to the birth of the digital computer and artificial 
intelligence.

Turing was an important player in the settle-
ment of the decidability issue, which led naturally 
to the study of the complexity of decidable prob-
lems, i.e., once it was proved that there are prob-
lems unsolvable by a computer, research turned 
to the question of “how long would it take to solve 
a decidable problem?” This is an exciting research 
field with lots of open questions. In this paper, we 
try to give a gentle introduction to the historical 
perspective of the search for efficient computing 
and its limitations.

2. BEFORE TURING: THE DREAM OF MECHANICAL 
REASONING AND DECIDABILITY

Gottfried W. Leibniz (1646-1716) was an impor-
tant mathematician, philosopher, jurist and inven-
tor, whose dream was to devise an automatic rea-
soning machine, based on an alphabet of unam-
biguous symbols manipulated by mechanical rules, 
which could formalize any consistent linguistic or 
mathematical system. He produced a calculus ra-
tiocinator, an algebra to specify the rules for ma-
nipulating logical concepts. More than a century 
later, George Boole (1815-1864) and Augustus De 
Morgan (1806-1871) converted the loose ideas 
of Leibniz into a formal system, Boolean algebra, 
from which Gottlob Frege (1848-1925) finally pro-
duced the fully developed system of axiomatic 
predicate logic.

Frege went on to prove that all the laws of arith-
metic could be logically deduced from a set of axi-
oms. He wrote a two-volume book with the formal 
development of the foundations of arithmetic, and 
when the second volume was already in print, Frege 
received the celebrated letter from Bertrand Russell 
(1872-1970) showing his theory was inconsistent. 
The counterexample was the paradox of extraordi-

nary sets. A set is defined to be extraordinary if it is 
a member of itself, otherwise it is called ordinary. Is 
the set of all ordinary sets also ordinary? (see Doxi-
adis, Papadimitriou, Papadatos and di Donna, 2009, 
pp. 169 to 171 for a particular charming account of 
the effect of Russell's letter to Frege).

Frege's work was the spark for 30 years of re-
search on the foundations of mathematics, and 
the end of the 19th c. and beginning of the 20th 
c. witnessed strong mathematical, philosophical 
and personal battles between members of the in-
tuitionist and formalist European schools (Davis, 
2000; Doxiadis, Papadimitriou, Papadatos and di 
Donna, 2009).

To better frame further developments, let us re-
call some notions. A formal system is a language, 
a finite set of axioms, and a set of inference rules 
used to derive expressions (or statements) from the 
set of axioms; an example is mathematics with the 
first-order logic developed by Frege. A system is said 
to be complete if every statement can be proved or 
disproved; otherwise the system is said to be incom-
plete. A system is said to be consistent if there is not 
a step-by-step proof within the system that yields a 
false statement.

A system is said to be decidable if, for every state-
ment, there exists an algorithm to determine whether 
the statement is true.

In 1928, at the International Congress of Math-
ematicians in Bologna, David Hilbert (1862-1943), 
a leading figure in the formalist school, presented 
to his fellow mathematicians three problems, the 
second of which would have a big impact on the 
development of computer science: the Entschei-
dungsproblem. In English, it is named the decision 
problem, and it can be formulated as follows: “pro-
vide a method that, given a first-order logic state-
ment, would determine in a finite number of steps 
whether the statement is true". In other words, the 
Entscheidungsproblem asks for the existence of a 
finite procedure that could determine whether a 
statement in mathematics is true of false. Hilbert 
was convinced that the answer would be yes, as 
mathematics should be complete, consistent and 
decidable.

3. TURING ESTABLISHES THE LIMITS OF COMPUTABILITY

In 1936 Turing completed the draft of his paper 
"On Computable Numbers, with an Application to the 
Entscheidungsproblem", where he proposed a formal 
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model of computation, the a-machine, today known 
as the Turing machine (TM), and he proved that any 
function that can be effectively computed (in Hilbert’s 
sense) by a human being could also be mechanically 
calculated in a finite number of steps by a mechanical 
procedure, namely the TM. Turing used his formalism 
to define the set of computable numbers, those reals 
for which their ith decimal can be computed in a finite 
number of steps. The number of computable numbers 
is countable but the number of reals is uncountable, 
so most of the reals are not computable. Some well-
known computable numbers are 1/7, π and e.

In his model, Turing introduced two essential as-
sumptions, the discretization of time and the discre-
tization of the state of mind of a human calculator. A 
TM consisted of an infinite tape divided into squares, 
a finite input on a finite alphabet, and a write-read 
head that could be in a finite number of states repre-
senting those of the human calculator's brain (Davis, 
2000; Moore and Mertens, 2011). The TM was a theo-
retical model of a stored-in program machine. An out-
standing achievement of Turing was the concept of 
Universal Turing Machine (UTM). Given the codified 
description of a TM as input, the UTM is able to simu-
late the computation of that machine and write the 
result. Hence, the UTM can simulate any other Turing 
machine, thus opening the way to digital computers.

Relying on his UTM, Turing made a decisive contri-
bution to computability, namely he produced a prob-
lem that was undecidable: the halting problem. It can 
be stated as follows: “Given a codified description of 
a TM and an input to it, decide if the UTM will halt”. 
The proof was a mimic of Geodel's incompleteness 
one, where a diagonalization argument produces a 
paradox (see Davis, 2000, chapter 7 for a nice infor-
mal explanation). Note that the halting problem is a 
counterexample, a negative solution to the Entschei-
dungsproblem1.

Turing’s PhD. thesis extended Gödel's incomplete-
ness theorem by proving that when new axioms are 
added to an incomplete formal system the system 
remains incomplete (Turing, 1939). A very important 
contribution of that work was the Oracle Turing-ma-
chine model. In the words of Turing: “Let us suppose 
we are supplied with some unspecified means of 
solving number-theoretical problems, a kind of ora-
cle as it were. We shall not go any further into the 
nature of this oracle apart from saying that it can't 
be a machine”.

Emil Post (1897-1954) realized that Turing's oracle 
machine had important implications for computabil-

ity, as it could be used to compare the relative dif-
ficulty of problems; thus he defined the concept of 
Turing-reducibility (T-reducibility). Given problems P1 
and P2, P1 is said to be Turing-reducible to P2 (P1 ≤T P2) if 
P2 can be used to construct in a finite number of steps, 
a program to solve P1. Note that if P1 ≤T P2 and P2 is de-
cidable then P1 is also decidable, and if P1 ≤T P2 and P1 
is undecidable, then P2 is also undecidable. Therefore, 
T-reducibility can be used to enlarge the class of know 
undecidable problems.

4. AFTER TURING: PROBLEM COMPLEXITY CLASSES

We have seen that the work of Turing and others let 
us determine, for any given problem, whether there 
is an algorithm to solve it (i.e., the problem is decid-
able) or not. Let us turn into the realm of solvable 
problems, and ask the question of how long it takes 
to solve a given decidable problem. It may seem that 
this is a pure technological issue, however we will see 
that there are problems for which today's computers 
would take more that the age of universe to find a so-
lution, when the input to the problem is a bit large.

The time complexity of a problem with input x is a 
measure of the number of steps that an algorithm will 
take to solve it, as a function of the size of the input 
|x| = n. Let us consider the worst-case complexity, 
where among all the possible inputs of size n, we take 
the one that behaves worst in terms of the number 
of steps performed by the algorithm. As an example, 
consider the school algorithms for multiplying two 
integers a and b of sizes na and nb, respectively, size 
measured as the number of digits in the binary ex-
pression (i.e., na = log2a), and let n = max{na, nb}, then 
the worst-case complexity of the algorithm is T(n) = 
O(n2).2

For decidable problems, the time complexity ex-
pression has a tremendous impact on the running 
time of an algorithm. Figure 1 (taken from Moore and 
Mertens, 2011) is an indication of the running time 
of different worst-case complexity figures, assuming 
a processor can solve an instance of size n = 1 in 10−3 
seconds, which is consistent with today’s technology. 
Note that an algorithm that solves a problem with 
complexity O(2n), if given an input of size n = 90, may 
yield the output after the universe would be finished 
(again, assuming today's technological level).

Let us try to get a feeling for the time-complexity 
of some problems. Given an n x n matrix M = (mij), its 
determinant is defined by the Leibniz formula

http://dx.doi.org/10.3989/arbor.2013.763n5011
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where σ is one permutation from the symmetric 
group of permutations Sn, and sgn (σ) is the sign of 
the permutation. A similar associate value of a square 
matrix is the permanent, which is defined

For example if

then det(M) = m11 
. m22– m12 

. m21 , while perm(M) = 
m11

.m22 + m12
.m21.

A direct implementation of the definition yields an 
O(n!) algorithm for both problems. However, by using 
the LU decomposition by Gauss and Turing, the deter-
minant of an n x n matrix can be computed in O(n3) 
steps, see for example in Cormen, Leiserson, Rivest 
and Stein (2001), while the complexity of comput-
ing the permanent seems to be much more difficult 
(Valiant, 1979). Recently D. Glynn has obtained a de-
terministic bound of O(n2n) to the complexity of the 
permanent (Glynn, 2010). Notice that if M1 and M2 are 
square matrices then det(M1M2) = det(M1) x det(M2), 
while perm(M1M2) ≠ perm(M1) x perm(M2).

A problem is said to be feasible if there exists an 
algorithm that solves it with polynomial time-com-

plexity. All other decidable problems are said to be 
unfeasible, which does not imply that in the near or 
distant future some problems may turn into feasible.

A particularly interesting kind of problems are the 
combinatorial optimization problems, where for any 
instance x and a solution sx for that instance, there is a 
cost function k(x, sx) ∈ ℝ+ and the objective is to find 
the sx* that optimizes (maximizes or minimizes) k(x, sx) 
over all possible solutions sx

3. Let Opt(x) denote the 
cost of an optimal solution.

For example, consider the chromatic number prob-
lem of a graph: “Given as input a graph G = (V, E), find 
the minimum number of different colors needed to 
have a valid coloring of the vertices in V”, where a valid 
coloring of G is an assignment of labels χ : V → {1, 2, 
…, k}, each integer representing a color, such that for 
any (u, v) Є E, χ(u) ≠ χ(v). Notice that, for any input G 
and solution χ, Opt(G) is a valid coloring with minimum 
number of colors.

 4.1 The classes P, NP and NP-complete

In the early 1950’s, some mathematicians started to 
realize that some decidable problems took too long to 
be solvable for large inputs. In a series of letters to the 
US National Security Agency, John Nash proposed a 
secure cryptographic encryption system based on the 
computational difficulty of problems (Nissan, 2004). 

Figure 1: Running times as a function of input size n

http://dx.doi.org/10.3989/arbor.2013.763n5011
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These letters foresaw the classification of decidable 
problems according to their computational complex-
ity and could have given birth to the field of complex-
ity theory if the letters had not remained a state secret 
until 2012.

The second important historical event for the study 
of problem complexity was the letter Kurt Gödel sent 
to John von Neumann in March 1956. At the time, von 
Neumann was dying and he did not read the letter, 
which was lost until the 1980’s. An English transla-
tion of the letter can be found in the appendix of Lip-
ton’s book (2010), which is a compilation of selected 
posts of his useful blog. As it is beautifully explained 
in Lipton’s poetic version of the events, “Kurt Gödel is 
walking along through the falling snow, he is thinking. 
Gödel is the greatest logician of his time, perhaps of all 
times, yet he is deeply troubled. He has found a prob-
lem he cannot solve. The problem concerns a simple 
but fundamental question. Suddenly he smiles, he has 
an idea. If he cannot solve the problem, then he will 
write a letter explaining it to John von Neumann; per-
haps John will be able to solve the problem. After all 
John von Neumann has one of the fastest minds in the 
world. Gödel pulls his scarf tighter, gets his bearings in 
the heavy falling snow, and heads to his office to write 
his letter”.

In his letter, Gödel considered the truncated Entsc-
heidungsproblem problem: “Given any statement in 
first-order logic (for example ∃x, y, z, n ∈ ℕ - {0} : (n 
≥ 3) ⋀ (xn + yn = zn)) decide if there is a proof of the 
statement with finite length of at most m lines, where 
m could be any large (1010) constant. As any math-
ematical proof could be represented using a small 
constant number c of symbols, the problem is decid-
able; just construct all the exponentially many cm pos-
sible proofs of length m, over the finite alphabet, and 
check if any of them works. Notice that most of the 
proofs will be gibberish. Moreover, for large m, there 
is a chance that the process could take longer than the 
existence of the earth! (see Fig. 1). Gödel in his letter 
asked if it was possible to do it in O(m2) steps, mak-
ing explicit the possible partition between decidable 
problems solved in polynomial time, and decidable 
problems that cannot be solved in polynomial time.

During the 1960’s, the existence of easy and hard 
problems started to be more obvious to researchers. 
As computers were solving problems with increas-
ing input size, researchers begin to consider the ef-
fect of input size on the computation time (number of 
steps) and space (number of cells visited), using the 
Turing machine as the computational model. An im-
portant contribution appeared in 1965 by Hartmanis 
and Stearns (1965), which defined the multi-tape Tur-
ing machine and laid the foundations of complexity 

theory. The same year, Edmonds (1965) gave an infor-
mal description of non-deterministic polynomial-time 
problems, i.e., those that permit verifying in polyno-
mial time whether a guessed hypothetical solution is 
indeed a correct solution to the problem. Nondeter-
minism would play a key role in the development of 
computational complexity theory. A nondeterministic 
algorithm could be seen as a game where a compu-
tationally omnipotent prover P provides a witness 
to the solution of the problem, and a verifier has to 
prove deterministically that the witness is indeed a 
correct solution.

Consider the problem of the satisfiability of a con-
junctive normal form (SAT): “Given a set of Boolean 
variables X and a Boolean formula 𝚽 on X in conjunc-
tive normal form, decide if there is an assignment A : 
X → {T, F} (truth, false) such that it satisfies 𝚽” (eval-
uates 𝚽 to T). A conjunctive normal form formula con-
sists of the conjunction of clauses, where each clause 
is a disjunction of literals (Boolean variables or their 
negation). For example, if X = {x1, x2, x3, x4}, consider 
the Boolean formula

A backtracking deterministic algorithm would find 
an assignment satisfying 𝚽. In a nondeterministic al-
gorithm, P would supply as witness an assignment A 
(for example, A(x1) = A(x4) = T, A(x2) = A(x3) = F) 
and V would have to verify that the substitution of 
such an assignment makes 𝚽 satisfiable. Note that if 
𝚽 has input size n (length of 𝚽), V could verify wheth-
er the assignment satisfies 𝚽 in O(n) steps.

In 1971 Stephen Cook showed that the SAT problem 
was a paradigmatic unfeasible problem in the sense 
that any problem that could be solved4 in polynomial 
time by a nondeterministic Turing machine could be 
reduced to the SAT problem, where the reducibility is 
the same concept as Turing-reducibility but imposing 
the condition that the construction should be done in 
polynomial time (Cook, 1971). The paper was present-
ed at the STOC-71 conference, and again using the 
Lipton (2010) description: “A tall figure walks slowly 
to the front of the conference room. Steve Cook is a 
young scientist, who is about to change the world. He 
has independently discovered the problem that trou-
bled Gödel that snowy day. He gives his talk, and after 
there is a polite applause, as there is for every talk”.

http://dx.doi.org/10.3989/arbor.2013.763n5011
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One attendee who understood perfectly the mean-
ing of Cook’s result was Richard Karp, who the follow-
ing year published a seminal paper formally defining 
the classes P, NP and NP-complete, and provided the 
proof that nine well-known problems were in the class 
NP-complete (Karp, 1972). His starting seed was that 
SAT Є NP-complete, which he coined as Cook’s Theo-
rem. At the same time, but independently from Cook 
and Karp, a Russian mathematician, Leonid Levin, was 
basically defining the class NP-complete (Levin, 1973), 
the article appeared translated into English the same 
1973, but it took a while for the community working 
in complexity theory to realize the meaning of Levin’s 
result (see Trakhtenbrot, 1984 for a history of early 
complexity theory developments in Russia). Today the 
result that SAT is NP-complete is known as the Cook-
Levin Theorem.

We next give an intuitive description of the com-
plexity classes. For a more technical description the 
reader is referred to any of the complexity or algorith-
mic books listed in the bibliography of this paper.

P is the class of problems for which there is a de-
terministic algorithm finding a solution in polynomial 
time, for any input.

NP is the class of problems such that if an omnis-
cient prover P provides a polynomial-length witness 
to the solution of the problem, a verifier V can prove 
in polynomial time whether the witness is indeed cor-
rect. The term NP stands for non-deterministic poly-
nomial time.

From the previous remarks on the SAT problem, it 
is clear that SAT ∈ NP: P supplies a valid assignment 
and V checks in linear time that the assignment satis-
fies the formula. However, if we consider a combina-
torial optimization problem, as the chromatic number 
of a graph, it is not so easy. Given an input G = (V, E), 
the chromatic number problem consists of finding a 
minimum valid coloring χ* for G” , i.e., assigning the 
minimum number of colors to V such that for every 
edge (u,v) ∈ E, χ* (u) ≠ χ* (v). To prove this prob-
lem is not in NP, assume that P provides a witness χ* 
to the colorability of V, then V tests that indeed χ* is 
a valid coloring by looking at every edge of G, which 
has a cost of O(n2). Moreover, V must also verify that 
there is no other valid coloring with less colors that 
χ*, i.e., he must compare with all other possible valid 
colorings for G, which could be exponential. There-
fore, the problem is not in NP.

To circumvent this difficulty, we consider the search 
version of the combinatorial optimization problem, 

where as a part of the input we also are given a value 
b that the cost function can take. If the optimization 
problem demands to maximize, the search version 
would require that k(x) ≥ b, and if it is a minimization 
problem the search version would require k(x) ≤ b.

Continuing with the example, the search version of 
the chromatic number problem can be stated as fol-
lows: “Given as input G = (V, E) and a b > 0, find a valid 
coloring χ of G such that |χ(V)| ≤ b”.

The search versions of optimization problems are 
obviously in NP. Furthermore, by using binary search 
it is a standard exercise to prove that if the search 
version of an optimization problem can be solved in 
polynomial time then the optimization version can 
also be solved in polynomial time (see Exercise 8.1 in 
Dasgupta, Papadimitriou and Vazirani, 2008).

Let us see some further examples of problems in P 
and NP:

The primality problem: “Given an integer a with 
length n = log a bits, decide whether a is prime”. There 
is a non-trivial proof that primality Є NP due to V. 
Pratt (1975), and for a long time it was open whether 
the problem was in P. In 2002, Agrawal, Kayal and 
Saxena provided a deterministic polynomial-time al-
gorithm to solve the primality problem, so the prob-
lem is in P (Agrawal, Kayal, and Saxena, 2002).

The factorization problem: “Given an integer a of n 
bits, find its prime decomposition”. This is an impor-
tant problem as, among other things, it is the basis 
of the RSA, one of the most used public-key cryp-
tographic systems (see Chapter 8 in Singh, 2000). 
Factorization is in NP, since if P provides a witness 
p1,…,pm, V can test that each pi is prime (using the al-
gorithm in Agrawal, Kayal, and Saxena, 2002) and see 
that the product is the given number. Nevertheless, 
it is an important open question whether there is a 
polynomial-time algorithm to solve factorization5.

The problem of 3-satisfiability (3-SAT) is the particu-
lar case of SAT where every clause in the input has 
exactly 3 literals. The problem is also in NP. However, 
an easy greedy algorithm puts 2-satisfiability in the 
class P.

Finally, the truncated Entscheidungsproblem is also 
in NP, since if we get a proof of less than 1010 pages 
as a certificate, any mathematician can verify in a rea-
sonable time (polynomial in 1010) whether it is cor-
rect (independently that there exist other valid proofs 
among the exponential number of generated ones).

http://dx.doi.org/10.3989/arbor.2013.763n5011
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Notice that P ⊆ NP. If V can obtain a determinis-
tic solution in polynomial time, he can also verify it in 
polynomial time.

The problem to decide whether P=NP was consid-
ered one of the nine millennium problems posed by 
the Clay Mathematics Institute in the year 2000. A 107 
US$ prize is awarded for each solution to one of the 
problems.

The answer P≠NP would mean that, for many im-
portant search problems, finding is more difficult than 
verifying. If, on the contrary, the answer is P=NP, then 
there would be a feasible algorithm for the truncated 
Entscheidungsproblem, i.e., proofs with a large but fi-
nite number of lines, which in practice would suffice 
for most mathematical theorems.

4.2 Karp reducibility and NP-completeness

To further study the relationship between search 
problems and the P=NP question, Karp defined the fol-
lowing simplified variation of Turing-reducibility: Given 
search problems A and B, with sets of instances IA and IB 
and sets of solutions SA and SB , a Karp reduction from A 
to B (A ≤P B) is a polynomial-time computable function 
f: IA → IB such that for any input x Є IA , f(x)has a 
solution in SB iff x has a solution in SA.

In other words, if A ≤P B and we have a polynomial-
time algorithm AB to solve B then we have a polyno-
mial-time algorithm to solve A, for any x Є IA comput-
ed in polynomial time AB (f(x)). Notice, a polynomial 
algorithm to solve A does not imply anything about 
the existence of a polynomial algorithm to solve B.

A search problem B is NP-complete if B Є NP and for 
any NP problem A, we have A ≤P B.

A useful property of reductions is that they are 
transitive. This property, together with the previous 
remark about reductions as problems solvers, tells us 
that the class NP-complete is the most difficult class 
of NP problems, in the sense that if one NP-complete 
problem is known to be in P then P=NP.

It is known that if P≠NP, there would be problems in 
NP that are neither in P nor NP-complete. These are in 
the class NP-intermediate (see Figure 2).

It is beyond the scope of this paper to show de-
tailed reductions between NP-complete problems, 
which can be found in any standard algorithmic book, 
see for example Garey and Johnson, 1979; Moore 
and Mertens, 2011. But we would like to enumerate 
a few more examples of problems NP-complete and 

Figure 2: Complexity classes inside NP

NP-intermediate. For a full taxonomy of NP-complete 
problems see Crescenzi and Kann (2012).

As already mentioned, SAT was the first problem 
known to be NP-complete; 3-SAT, the truncated Entsc-
heidungsproblem, and chromatic number of a graph 
are also NP-complete problems. Factoring an integer 
as a product of primes is in NP-intermediate. Another 
significant problem in the class NP-intermediate is 
graph isomorphism: Given two graphs G1 = (V1, E1) and 
G2 = (V2, E2), find if there is a permutation π: V1 → V2 
such that (u, v) Є E1 iff (π(u), π(v)) Є E2.

Consider the 3-coloring of a graph problem: “Given 
input graph G = (V, E), decide if there is a valid coloring 
of V with exactly 3 colors” (see Figure 3). The problem is 
in NP: if P provides a 3-color witness χ, then V can ver-
ify in O(|V|2) whether χ is a valid coloring. It is known 
that this problem is NP-complete. Deciding whether a 
graph is 2-colorable and, if so, finding the coloring is in 
P (Dasgupta, Papadimitriou and Vazirani, 2008).

The following example taken from Moore and 
Mertens (2011, p. 152) shows that NP-completeness 
can appear in calculus problems. The cosine integra-
tion problem: “Given integers x1, ... , xn , decide if

The class NP-complete contains many everyday 
practical problems. There is a series of problems deal-
ing with minimizing delivery costs or time, which de-
rive from the Traveling Salesman Problem (TSP). The 
search version of TSP has as input a complete graph G 
= (V, E), with a weight w(vi , vj) ≥ 0 on each edge (vi, vj), 
together with a value c, the goal is to find a tour visit-
ing all vertices exactly once, such that

http://dx.doi.org/10.3989/arbor.2013.763n5011
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This problem is NP-complete. Another important 
This problem is NP-complete. Another important set of 
practical problems derive from the job scheduling prob-
lem. In its most general setting, the problem can be for-
mulated as follows: “Given n jobs J1,... Jn, where each Jk 
has a processing time tk, and given m identical machines 
M1,..., Mm, then each job Jk must run on a machine Mi 
for tk consecutive units of time, and during that time no 
other job can run on the same machine. The problem 
is to find an assignment of jobs to machines such that it 
minimizes the makespan of the schedule

where Ti denotes the time at which machine Mi com-
pletes its jobs”. The search version of the problem is 
NP-complete for m > 2. For more information on the 
problem and its variations, see Brucker (2006).

As a final example, we would like to present evi-
dence of the influence of the P versus NP prob-
lem in other disciplines, for example, economics. 
The Efficient Market Hypothesis (EMH) states that 
future prices cannot be predicted by analyzing 
prices from the past (Fama, 1965). In an enjoyable 
recent paper by the economist P. Maymin (2011), 
he proves that the EMH is false iff P=NP. For peo-
ple with a little background in complexity theory, 
the paper is quite straightforward, still it presents 
a clear example of the spread of complexity theory 
to other fields.

4.3 Coping with NP-completeness

What can be done when having to deal with an NP-
complete problem? For inputs of very small size n, 
a complexity of O(2n) or O(n!) can be computed in 
reasonable computer time, but as we showed in Fig-

ure 1, the problem becomes intractable as n grows. 
Nevertheless, it turns out that for some NP-com-
plete problems there are only a few “bad” inputs. 
The worst-case complexity assumes that there is a 
devil adversary that chooses the worst possible in-
stance of the problem. In the early 1990’s there was 
empirical evidence that for some problems such as 
graph coloring, satisfiability, integer partition, etc., 
there was a sharp jump from instances which were 
easily solved to instances that were easily shown not 
to have a solution, and just a few instances were dif-
ficult to solve. That phenomenon is denoted phase 
transition as it is similar to the phenomena studied 
by physics of sudden changes of states, between 
solid, liquid and gas. For instance, consider the 3-SAT 
problem. There is a well-know clever exhaustive 
search algorithm for SAT, the Davis-Putnam-Loge-
mann-Loveland (DPLL), which was shown to solve 
many random instances of 3-SAT in polynomial time 
(Mitchell, Selman, and Levesque, 1992). To produce 
a random instance for 3-SAT with n boolean variables 
and m = rn clauses, one has to choose uniformly at 
random each clause, with probability 1/(n

3) and then 
go over the variables in each clause and negate each 
with probability = 1/2. The density of one of these 
formulae is defined as r = n/m.

For example, the random 3-SAT formula

has density r = 0.4.

Figure 3: 3-colorable G with a valid coloring

http://dx.doi.org/10.3989/arbor.2013.763n5011
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Mitchell, Selman, and Levesque (1992) first experi-
mentally showed that the number of random 3-SAT 
formulae for which the DPLL algorithm took exponen-
tial time was small (see Figure 4a). Moreover, their ex-
periments also showed that, with high probability, for 
densities r < 4.2 random 3-SAT formulae are satisfiable 
and for r > 4.2 random 3-SAT formulae are not satisfi-
able (see Figure 4b).

In 2002, using non-rigorous techniques from statisti-
cal physics (the replica method) on very large instanc-
es of 3-SAT, Mézard, Parisi and Zecchina (2002) and 
Mézard and Zecchina (2002) showed that the thresh-
old for 3-SAT occurs at formulae with density rc = 4.27, 
i.e., random 3-SAT formulae with density < 4.27 are 
satisfiable with high probability, and random 3-SAT 
formulae with density < 4.27 are satisfiable with high 
probability, and radom 3-SAT formulae with density > 
4.27 are NOT satisfiable with high probability. Since 
then, there has been an effort to establish this sharp 
phase transition by rigorous analytical methods. So 
far for 3-SAT, the best lower bound is 3.52 (Hajiaghayi 
and Sorkin, 2003; Kaporis, Kirousis and Lalas, 2006) 
and the corresponding upper bound is 4.4907 (Díaz, 
Kirousis, Mitsche and Pérez, 2009). Closing the gap re-
mains an open problem. See Chapter 14 in Moore and 
Mertens (2011).

The fact that some NP-complete problems have a not 
too large number of bad instances indicates that some-
times heuristics can be used to achieve good results. 
Heuristics are procedures with no guarantees either in 
the running time or on the accuracy of the obtained 
solution, but for many hard problems, like for example, 
the layout of VLSI circuits, heuristics are the best practi-
cal solution (Wolf, 2011). Some modern textbooks on al-
gorithms include a chapter on heuristics, clever backtracking 
techniques, like the DPLL algorithm we mentioned for solv-
ing SAT, simulated annealing or different versions of local 
search. For a general textbook on heuristics see Michale-
wicz and Fogel (1998).

Another practical alternative is using approximation 
algorithms. An algorithm is said to r-approximate an 
optimization problem if, on every input, the algorithm 
finds a solution whose cost is ≤ 1/r if the problem asks 
for the minimum value, or ≥ 1/r if the problem asks for 
a maximum value.

Almost since the beginning of the development of 
complexity theory, there was a parallel effort to develop 
approximation algorithms for NP-complete problems. Al-
though the first such algorithm is due to Graham in 1966, 
who developed it to approximate a version of scheduling, 
the seminal paper for approximation theory by Johnson 

Figure 4: Experiments with random 3-SAT formulae, from Mitchell, Selman, and Levesque (1992). In (a) each dot 
represents the time DPLL takes on a random instance of 3-SAT. Light dots represent satisfiable instances and dark 
dots represent non-satisfiable instances. (b) The phase transition satisfiable to non-satisfiable for a random 3-SAT 
formula occurs at density 4.27.
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(1974) came very little after Cook, Levin and Karp’s papers. 
Since then, the theory of approximation and of inapprox
imability has become a very fruitful field in theoretical 
computer science, with good books covering the topic, 
for example Williamson and Smoys, 2010.

Parallelism is another powerful tool to speed up com-
putation by a constant factor. Notice that anything that 
can be done with 1010 processors in T steps, can be done 
with one processor in 1010T steps. But unless P=NP, the 
difference between P and NP-complete problems is an 
exponential cost of computation, therefore parallelism 
would not be the tool to solve NP-complete problems in 
polynomial time.

In the same way, a result by Impagliazzo and Widg-
erson (1997) implies that, unless P=NP, randomization 
would not help to solve NP-complete problems. In fact, 
there is a stronger conjecture: randomization mainly 
helps to improve the time complexity of problems in P.

At the present time, quantum computers are not an ex-
isting reality, although D-Wave Systems, Inc. has managed 
to build a 128-qubit processor (not general purpose). At 
the theory level, we know quantum computation could 
solve NP-intermediate problems, for example factorization 
of an integer (Shor, 1997), but it is generally agreed that, 
unless P=NP, quantum computation would not help with 
NP-complete problems (Bernstein and Vazirani, 1997). 
See Aaronson (2008) for an extensive discussion on the 
limitations of quantum computers.

5. Beyond Turing: Interactive Proofs and 
Zero-Knowledge Proofs

A fascinating line of research in theoretical com-
puter science started in the mid 1980’s, which led 
to fruitful results, namely Interactive Proofs. In this 
section, we aim to give a brief intuitive introduction 
to the topic, in particular to Zero-Knowledge Proofs 
(ZKP) and Probabilistically Checkable Proofs (PCP). For 
the interested reader, we recommend Chapter 11 in 
Moore and Mertens (2011) and Chapters 8, 9 and 11 
in Arora and Barak (2009). The topic has spanned 26 
years, with numerous papers and fruitful applications 
in various fields, such as cryptography and approxima-
tion algorithms, among others.

The basic idea is how one researcher (the prover P) 
can convince another researcher (the verifier V )6 that 
he has a correct proof to a difficult theorem by only 
showing to V a few random bits of the proof, in such a 
way that at the end V is convinced that the proof is cor-
rect without having any insight into how it works.

To grasp the concept of zero-knowledge proof, let 
us start with the very simple illustrative example from 
Quisquater, Quisquater, Quisquater, Quisquater, Guil-
lou, Guillou, Guillou, Guillou, Guillou, Guillou, and 
Berson (1989)7. There is a cave with two paths A and 
B, which are connected at their ends by a secret pas-
sage (see Figure 5). To cross that passage one must 
know the magic words. In our case, P wants to con-
vince V that he knows the magic words without tell-
ing them to V. They agree on the following protocol: 
V will remain outside of the cave, so he cannot see 
which path P  takes. When P arrives at the end of the 
cave, V tells P  which path to return along, and V en-
ters the cave to make sure P  is returning for the path 
he indicated. The probability that P took the path V 
asks him to return is 1/2, therefore if the experiment 
is repeated a sufficiently large number of times, and 
each time P returns by the correct path, with prob-
ability 1 P must know the magic words to cross the 
cave, and V is convinced that P knows them.

ZKP are a particular case of the most general Inter-
active Proofs Systems, introduced concurrently in Ba-
bai (1985) and Goldwasser, Micali and Rackoff (1989)8. 
Technically the word proof refers to a randomized 
interactive protocol between P and V, where P has 
unlimited computational capabilities and tries to con-
vince V of the truth of a certain statement. Loosely 
speaking, the two characteristics that an interactive 
protocol must have to be an interactive proof is that 
an honest V should always be convinced by an honest 
P , but a cheater P  should have a very small probabil-
ity of convincing an honest V that a false statement is 
true. The interactive proof system is zero-knowledge 
if V is not going to learn anything from the interac-
tion with P. In the previous example, V becomes 
convinced that P knows the magic words to cross be-
tween the two paths.

Figure 5: Ali Baba’s magic cave.
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Let us describe a more interesting example. Consid-
er a given graph G = (V, E), where 􏿖 V 􏿖 = n and 􏿖 E 􏿖 = m. 
As we saw before, to decide whether G has chromatic 
number 3 is an NP-complete problem, therefore in 
general it is not a feasible problem to solve for large 
values of n. In this setting, P wants to convince V that 
he has a valid 3-coloring of G, without revealing the 
coloring. This example is from Goldreich, Micali and 
Wigderson (1991). At each iteration of the protocol, V 
only has access to the colorings at the ends of a single 
edge he chooses at the iteration. The protocol is the 
following: First P selects a valid 3-coloring (for every 
(􏷙, 􏷚) ⋲ E, u and v must have different colors) and 
generates all 3! = 6 permutations of valid 3-colorings 
for G; let C be the set of all 6 valid colorings. For n3 
iterations, at each iteration i, P chooses with prob-
ability 1/6 a new coloring ci ⋲ C , V selects an edge 
and verifies that the edge is correctly colored. Assume 
that G has a valid 3-coloring (see for example Figure 
3). Notice that if V  chooses the same edge (u, v) at 
two different iterations, the colors assigned to each 
vertex may be different, as at each iteration P chooses 
a new random coloring, therefore V will not be able 
to learn a valid coloring for the whole G. On the other 
hand, if G is not 3-colorable, at each round, at least 
one edge will have the same color for both vertices, 
therefore the probability that V will discover a wrong 
edge is at least 1/m per round. As m ≤ n2, after n3 itera-
tions with probability tending to 1, V will discover that 
G is not 3-colorable.

Technically the way P shows the colors to V is a bit 
more complicated, using a one-way-function. One-way-
functions are functions that can be easily computed but 
are hard (exponential time) to invert. A trivial example 
of one-way-function is integer multiplication: it is easy 
to multiply m = al x a2 x ... x an, however as we already 
mentioned, there is no known polynomial-time algo-
rithm for factorizing m. Another more interesting ex
ample of a one-way-function is the discrete logarithm: 
“Given n-bit integers x, y, z, find whether there exists 
an integer w such that y = xw mod z”. Given x, w and z, 
it is easy to compute y = f (x, w, z) = xw mod z, but it is 
conjectured that finding f −1(y) takes exponential time. 
One-way-functions are in standard use in cryptography.

By applying reductions to the 3-colorability prob-
lem, it was shown in Goldreich, Micali and Wigderson 
(1991) that under the assumption of the existence 
of one-way-functions, every problem in class NP has 
a zero-knowledge proof. In fact, if we denote IP the 
class of problems having an interactive protocol, it 
is known that IP, as a complexity class, contains far 

more difficult problems than NP (under the hypoth-
esis P≠NP) (Shamir, 1992). Computing the permanent 
of a matrix is a problem in the class IP, which means 
that even under the hypothesis P=NP, it would remain 
a hard problem.

The culmination of interactive proof systems re-
search was one of the most beautiful and deep theo-
rems in computer science, the PCP-theorem. Although 
the Gödel prize 2001 was shared by Arora and Safra 
(1998), Arora, Lund, Motwani, Sudan and Szegedy 
(1998) and Feigue, Goldwasser, Lovasz, Safra, and 
Szegedy (1996) for their contribution to Probabilisti-
cally Checkable Proofs and the PCP-theorem, many 
of the techniques and ideas are due to a much larg-
er number of researchers (see for example Johnson 
(1992) for an extensive historical account, and Chap-
ter 16 in Williamson and Smoys (2010) for further re-
cent work using the PCP-theorem to obtain inapproxi-
mability results).

The rough idea of probabilistically checkable proof 
systems is: “Given a conventional mathematical proof 
in which a mistake could be hidden in any equation, 
transform the proof in such a way that the mistake 
is spread almost everywhere”. This kind of proof is 
denoted a holographic proof. A PCP system for an NP 
problem encodes the witness to the problem in a way 
such that V can verify probabilistically the witness by 
looking only to a few of its bits, so that if it is true V 
accepts with probability 1, and if it is false V accepts 
with probability < 1/2.

The PCP-theorem states that holographic proofs ex-
ist for problems in NP, i.e., that any problem in NP has 
a polynomial length probabilistically checkable proof, 
where V  flips O(log n) random coins and need to look 
only at O(1) bits of the proof.

6. CONCLUSIONS

Contrary to Hilbert’s Entscheidungsproblem, it re-
mains an open problem to decide whether the trun-
cated Entscheidungsproblem is feasible, i.e., it re-
mains open to decide whether P=NP. It follows from 
the arguments in the present paper that a positive an-
swer to that question may answer all seven remaining 
open millennium problems.

At least there are 54 existing bogus proofs of the 
P=NP question. Of them, 26 “proving” the equality, 
24 “proving” the strict inclusion, and 3 “proving” that 
the P=NP question is itself undecidable. For further 
details see Woeginger. Most scientists working in 
complexity theory believe that P ≠ NP, but there are 
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some top scientists in the field that disagree with the 
majority, see for instance Lipton’s blog.

The aim of this manuscript was not to review the 
complexity field or the status and future of the P=NP 
question. As we pointed out, there are some outstand-
ing textbooks dealing with all the past, present and fu-
ture attempts and results in complexity. Our only incur-
sion into the areas of modern complexity has been the 
topic of interactive proofs, and this is because we think 
that it is a natural continuation to the truncated Entsc-
heidungsproblem, in the sense that PCP basically tells 
us how to convince our colleagues that we have a cor-
rect proof without giving away any real details. Moreo-
ver, it turns out that PCP is a strong characterization of 
NP problems. Could we one day even have a practical 
holographic way to check proofs?

Complexity theory has studied different models of 
computation (Turing machine with bounded number 
of steps, Boolean circuits, quantum algorithms, rand-
omized algorithms), the complexity of measuring dif-
ferent parameters (space, number of iterations, depth 
of circuits), and several measures of complexity (worst 

case, average, smoothed). All this work has created a 
whole cosmos of about 500 complexity classes (Aar-
onson, Kuperberg and Granade). For most of them, 
strict relations are not known and, at the end, the 
main issue boils down to the basic intuition by Kurt 
Gödel in 1954.

We tried to convey the idea that this is one of the 
deepest questions of today’s science, affecting not 
only computer science, mathematics and physics, but 
also biology, sociology, economics and most human 
activities. We see this broad coverage of this question 
as a direct consequence of Turing’s way of looking 
through the algorithmic lens to problems in different 
disciplines, from cryptography and physics to biology. 
The spread of modern technologies is accelerating the 
need for an algorithmic view of today’s social, eco-
nomical, cultural, and political interactions, leading 
directly to the question P=NP? For an excellent survey 
of the role of the algorithmic view into the activities 
within the modern world, we recommend the book 
by Easley and Kleinberg (Easley and Kleinberg, 2010).

NOTES

1 In parallel to Turing, A. Church also gave 
a negative answer to the Entschei-
dungsproblem using a logic formalism, 
λ-calculus.

2 The complexity is expressed in asympto-
tic notation, i.e., for very large values of 
the input. The notation T(n) = O(f (n)) 
means that limn→∞ T(n)/f(n) = c , where 
c is a constant.

3 It may happen that there is no feasible 
solution for input x, then k(x, s) does 
not exist.

4 The correct word is recognized, as the 
problems are posed as recognition 
problems, i.e. determining whether a 
word belongs to a language over a finite 
alphabet.

5 A positive answer will render all transac-
tions done using RSA insecure.

6 In a large part of the scientific bibliogra-
phy, the prover and the verifier are res-
pectively named Merlin and Arthur.

7 The authors frame their explanation in 
the arabic tale “Ali Baba and the forty 
thieves” from the classic “One thousand 
and one nights”.

8 The conference version of Goldwasser, 
Micali and Rackoff (1989) appeared at 
STOC-85.
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