
EL LEGADO DE ALAN TURING / THE LEGACY OF ALAN TURING

ARBOR Ciencia, Pensamiento y Cultura

Vol. 189-764, noviembre-diciembre 2013, a080 | ISSN-L: 0210-1963

doi: http://dx.doi.org/10.3989/arbor.2013.764n6003

Turing’s algorithmic lens:
From computability to

complexity theory

LA LENTE ALGORÍTMICA DE
TURING: DE LA COMPUTABILIDAD
A LA TEORÍA DE LA COMPLEJIDAD

Josep Díaz* and Carme Torras**
*Llenguatges i Sistemes Informàtics, UPC.

diaz@lsi.upc.edu
**Institut de Robòtica i Informàtica Industrial, CSIC-UPC.

torras@iri.upc. edu

Copyright: © 2013 CSIC. This is an open-access article distributed
under the terms of the Creative Commons Attribution-Non
Commercial (by-nc) Spain 3.0 License.

Citation/Cómo citar este artículo: Díaz, J. and Torras, C. (2013).
“Turing’s algorithmic lens: From computability to complexity
theory”. Arbor, 189 (764): a080. doi: http://dx.doi.org/10.3989/
arbor.2013.764n6003

Received: 10 July 2013. Accepted: 15 September 2013.

RESUMEN: La cuestión de la decidibilidad, es decir, si es posible de-
mostrar computacionalmente que una expresión matemática es
verdadera o falsa, fue planteada por Hilbert y permaneció abierta
hasta que Turing la respondió de forma negativa. Establecida la
no-decidibilidad de las matemáticas, los esfuerzos en informática
teórica se centraron en el estudio de la complejidad computacio-
nal de los problemas decidibles. En este artículo presentamos una
breve introducción a las clases P (problemas resolubles en tiempo
polinómico) y NP (problemas resolubles de manera no determinis-
ta en tiempo polinómico), al tiempo que exponemos la dificultad
de establecer si P = NP y las consecuencias que se derivarían de
que ambas clases de problemas fueran iguales. Esta cuestión tiene
implicaciones no solo en los campos de la informática, las mate-
máticas y la física, sino también para la biología, la sociología y la
economía. La idea seminal del estudio de la complejidad computa-
cional es consecuencia directa del modo en que Turing abordaba
problemas en diferentes ámbitos mediante lo que hoy se denomi-
na la lupa algorítmica. El artículo finaliza con una breve exposición
de algunos de los temas de investigación más actuales: transición
de fase en problemas NP, y demostraciones holográficas, donde
se trata de convencer a un adversario de que una demostración es
correcta sin revelar ninguna idea de la demostración.

Palabras clave: Complejidad computacional; el problema
de calcular la permanente de una matriz; problemas P y NP;
demostraciones interactivas y holográficas.

ABSTRACT: The decidability question, i.e., whether any
mathematical statement could be computationally proven
true or false, was raised by Hilbert and remained open until
Turing answered it in the negative. Then, most efforts in
theoretical computer science turned to complexity theory
and the need to classify decidable problems according to
their difficulty. Among others, the classes P (problems
solvable in polynomial time) and NP (problems solvable in
non-deterministic polynomial time) were defined, and one
of the most challenging scientific quests of our days arose:
whether P = NP. This still open question has implications
not only in computer science, mathematics and physics, but
also in biology, sociology and economics, and it can be seen
as a direct consequence of Turing’s way of looking through
the algorithmic lens at different disciplines to discover how
pervasive computation is.

Keywords: Computational complexity; the permanent
problem; P and NP problems; Interactive proofs and holographic
proofs.

http://dx.doi.org/10.3989/arbor.2013.764n6003
http://1si.upc.edu
http://dx.doi.org/10.3989/arbor.2013.764n6003
http://dx.doi.org/10.3989/arbor.2013.764n6003

ARBOR Vol. 189-764, noviembre-diciembre 2013, a080. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6003

Turing’s algorithm
ic lens: From

 com
putability to com

plexity theory

2

a080

1. INTRODUCTION

The English mathematician Alan Mathison Turing
(1912-1954) is well-known for his key role in the
development of computer science, but he also
made important contributions to the foundations
of mathematics, numerical analysis, cryptography,
quantum computing and biology. In the present
paper we focus exclusively on the influence of
Turing on computability and complexity theory,
leaving aside other aspects of his work even within
computer science, most notably his contribution
to the birth of the digital computer and artificial
intelligence.

Turing was an important player in the settle-
ment of the decidability issue, which led naturally
to the study of the complexity of decidable prob-
lems, i.e., once it was proved that there are prob-
lems unsolvable by a computer, research turned
to the question of “how long would it take to solve
a decidable problem?” This is an exciting research
field with lots of open questions. In this paper, we
try to give a gentle introduction to the historical
perspective of the search for efficient computing
and its limitations.

2. BEFORE TURING: THE DREAM OF MECHANICAL
REASONING AND DECIDABILITY

Gottfried W. Leibniz (1646-1716) was an impor-
tant mathematician, philosopher, jurist and inven-
tor, whose dream was to devise an automatic rea-
soning machine, based on an alphabet of unam-
biguous symbols manipulated by mechanical rules,
which could formalize any consistent linguistic or
mathematical system. He produced a calculus ra-
tiocinator, an algebra to specify the rules for ma-
nipulating logical concepts. More than a century
later, George Boole (1815-1864) and Augustus De
Morgan (1806-1871) converted the loose ideas
of Leibniz into a formal system, Boolean algebra,
from which Gottlob Frege (1848-1925) finally pro-
duced the fully developed system of axiomatic
predicate logic.

Frege went on to prove that all the laws of arith-
metic could be logically deduced from a set of axi-
oms. He wrote a two-volume book with the formal
development of the foundations of arithmetic, and
when the second volume was already in print, Frege
received the celebrated letter from Bertrand Russell
(1872-1970) showing his theory was inconsistent.
The counterexample was the paradox of extraordi-

nary sets. A set is defined to be extraordinary if it is
a member of itself, otherwise it is called ordinary. Is
the set of all ordinary sets also ordinary? (see Doxi-
adis, Papadimitriou, Papadatos and di Donna, 2009,
pp. 169 to 171 for a particular charming account of
the effect of Russell's letter to Frege).

Frege's work was the spark for 30 years of re-
search on the foundations of mathematics, and
the end of the 19th c. and beginning of the 20th
c. witnessed strong mathematical, philosophical
and personal battles between members of the in-
tuitionist and formalist European schools (Davis,
2000; Doxiadis, Papadimitriou, Papadatos and di
Donna, 2009).

To better frame further developments, let us re-
call some notions. A formal system is a language,
a finite set of axioms, and a set of inference rules
used to derive expressions (or statements) from the
set of axioms; an example is mathematics with the
first-order logic developed by Frege. A system is said
to be complete if every statement can be proved or
disproved; otherwise the system is said to be incom-
plete. A system is said to be consistent if there is not
a step-by-step proof within the system that yields a
false statement.

A system is said to be decidable if, for every state-
ment, there exists an algorithm to determine whether
the statement is true.

In 1928, at the International Congress of Math-
ematicians in Bologna, David Hilbert (1862-1943),
a leading figure in the formalist school, presented
to his fellow mathematicians three problems, the
second of which would have a big impact on the
development of computer science: the Entschei-
dungsproblem. In English, it is named the decision
problem, and it can be formulated as follows: “pro-
vide a method that, given a first-order logic state-
ment, would determine in a finite number of steps
whether the statement is true". In other words, the
Entscheidungsproblem asks for the existence of a
finite procedure that could determine whether a
statement in mathematics is true of false. Hilbert
was convinced that the answer would be yes, as
mathematics should be complete, consistent and
decidable.

3. TURING ESTABLISHES THE LIMITS OF COMPUTABILITY

In 1936 Turing completed the draft of his paper
"On Computable Numbers, with an Application to the
Entscheidungsproblem", where he proposed a formal

http://dx.doi.org/10.3989/arbor.2013.763n5011

ARBOR Vol. 189-764, noviembre-diciembre 2013, a080. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6003

Josep D
íaz &

 Carm
e Torras

3

a080

model of computation, the a-machine, today known
as the Turing machine (TM), and he proved that any
function that can be effectively computed (in Hilbert’s
sense) by a human being could also be mechanically
calculated in a finite number of steps by a mechanical
procedure, namely the TM. Turing used his formalism
to define the set of computable numbers, those reals
for which their ith decimal can be computed in a finite
number of steps. The number of computable numbers
is countable but the number of reals is uncountable,
so most of the reals are not computable. Some well-
known computable numbers are 1/7, π and e.

In his model, Turing introduced two essential as-
sumptions, the discretization of time and the discre-
tization of the state of mind of a human calculator. A
TM consisted of an infinite tape divided into squares,
a finite input on a finite alphabet, and a write-read
head that could be in a finite number of states repre-
senting those of the human calculator's brain (Davis,
2000; Moore and Mertens, 2011). The TM was a theo-
retical model of a stored-in program machine. An out-
standing achievement of Turing was the concept of
Universal Turing Machine (UTM). Given the codified
description of a TM as input, the UTM is able to simu-
late the computation of that machine and write the
result. Hence, the UTM can simulate any other Turing
machine, thus opening the way to digital computers.

Relying on his UTM, Turing made a decisive contri-
bution to computability, namely he produced a prob-
lem that was undecidable: the halting problem. It can
be stated as follows: “Given a codified description of
a TM and an input to it, decide if the UTM will halt”.
The proof was a mimic of Geodel's incompleteness
one, where a diagonalization argument produces a
paradox (see Davis, 2000, chapter 7 for a nice infor-
mal explanation). Note that the halting problem is a
counterexample, a negative solution to the Entschei-
dungsproblem1.

Turing’s PhD. thesis extended Gödel's incomplete-
ness theorem by proving that when new axioms are
added to an incomplete formal system the system
remains incomplete (Turing, 1939). A very important
contribution of that work was the Oracle Turing-ma-
chine model. In the words of Turing: “Let us suppose
we are supplied with some unspecified means of
solving number-theoretical problems, a kind of ora-
cle as it were. We shall not go any further into the
nature of this oracle apart from saying that it can't
be a machine”.

Emil Post (1897-1954) realized that Turing's oracle
machine had important implications for computabil-

ity, as it could be used to compare the relative dif-
ficulty of problems; thus he defined the concept of
Turing-reducibility (T-reducibility). Given problems P1
and P2, P1 is said to be Turing-reducible to P2 (P1 ≤T P2) if
P2 can be used to construct in a finite number of steps,
a program to solve P1. Note that if P1 ≤T P2 and P2 is de-
cidable then P1 is also decidable, and if P1 ≤T P2 and P1
is undecidable, then P2 is also undecidable. Therefore,
T-reducibility can be used to enlarge the class of know
undecidable problems.

4. AFTER TURING: PROBLEM COMPLEXITY CLASSES

We have seen that the work of Turing and others let
us determine, for any given problem, whether there
is an algorithm to solve it (i.e., the problem is decid-
able) or not. Let us turn into the realm of solvable
problems, and ask the question of how long it takes
to solve a given decidable problem. It may seem that
this is a pure technological issue, however we will see
that there are problems for which today's computers
would take more that the age of universe to find a so-
lution, when the input to the problem is a bit large.

The time complexity of a problem with input x is a
measure of the number of steps that an algorithm will
take to solve it, as a function of the size of the input
|x| = n. Let us consider the worst-case complexity,
where among all the possible inputs of size n, we take
the one that behaves worst in terms of the number
of steps performed by the algorithm. As an example,
consider the school algorithms for multiplying two
integers a and b of sizes na and nb, respectively, size
measured as the number of digits in the binary ex-
pression (i.e., na = log2a), and let n = max{na, nb}, then
the worst-case complexity of the algorithm is T(n) =
O(n2).2

For decidable problems, the time complexity ex-
pression has a tremendous impact on the running
time of an algorithm. Figure 1 (taken from Moore and
Mertens, 2011) is an indication of the running time
of different worst-case complexity figures, assuming
a processor can solve an instance of size n = 1 in 10−3
seconds, which is consistent with today’s technology.
Note that an algorithm that solves a problem with
complexity O(2n), if given an input of size n = 90, may
yield the output after the universe would be finished
(again, assuming today's technological level).

Let us try to get a feeling for the time-complexity
of some problems. Given an n x n matrix M = (mij), its
determinant is defined by the Leibniz formula

http://dx.doi.org/10.3989/arbor.2013.763n5011

ARBOR Vol. 189-764, noviembre-diciembre 2013, a080. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6003

Turing’s algorithm
ic lens: From

 com
putability to com

plexity theory

4

a080

where σ is one permutation from the symmetric
group of permutations Sn, and sgn (σ) is the sign of
the permutation. A similar associate value of a square
matrix is the permanent, which is defined

For example if

then det(M) = m11
. m22– m12

. m21 , while perm(M) =
m11

.m22 + m12
.m21.

A direct implementation of the definition yields an
O(n!) algorithm for both problems. However, by using
the LU decomposition by Gauss and Turing, the deter-
minant of an n x n matrix can be computed in O(n3)
steps, see for example in Cormen, Leiserson, Rivest
and Stein (2001), while the complexity of comput-
ing the permanent seems to be much more difficult
(Valiant, 1979). Recently D. Glynn has obtained a de-
terministic bound of O(n2n) to the complexity of the
permanent (Glynn, 2010). Notice that if M1 and M2 are
square matrices then det(M1M2) = det(M1) x det(M2),
while perm(M1M2) ≠ perm(M1) x perm(M2).

A problem is said to be feasible if there exists an
algorithm that solves it with polynomial time-com-

plexity. All other decidable problems are said to be
unfeasible, which does not imply that in the near or
distant future some problems may turn into feasible.

A particularly interesting kind of problems are the
combinatorial optimization problems, where for any
instance x and a solution sx for that instance, there is a
cost function k(x, sx) ∈ ℝ+ and the objective is to find
the sx* that optimizes (maximizes or minimizes) k(x, sx)
over all possible solutions sx

3. Let Opt(x) denote the
cost of an optimal solution.

For example, consider the chromatic number prob-
lem of a graph: “Given as input a graph G = (V, E), find
the minimum number of different colors needed to
have a valid coloring of the vertices in V”, where a valid
coloring of G is an assignment of labels χ : V → {1, 2,
…, k}, each integer representing a color, such that for
any (u, v) Є E, χ(u) ≠ χ(v). Notice that, for any input G
and solution χ, Opt(G) is a valid coloring with minimum
number of colors.

 4.1 The classes P, NP and NP-complete

In the early 1950’s, some mathematicians started to
realize that some decidable problems took too long to
be solvable for large inputs. In a series of letters to the
US National Security Agency, John Nash proposed a
secure cryptographic encryption system based on the
computational difficulty of problems (Nissan, 2004).

Figure 1: Running times as a function of input size n

http://dx.doi.org/10.3989/arbor.2013.763n5011

ARBOR Vol. 189-764, noviembre-diciembre 2013, a080. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6003

Josep D
íaz &

 Carm
e Torras

5

a080

These letters foresaw the classification of decidable
problems according to their computational complex-
ity and could have given birth to the field of complex-
ity theory if the letters had not remained a state secret
until 2012.

The second important historical event for the study
of problem complexity was the letter Kurt Gödel sent
to John von Neumann in March 1956. At the time, von
Neumann was dying and he did not read the letter,
which was lost until the 1980’s. An English transla-
tion of the letter can be found in the appendix of Lip-
ton’s book (2010), which is a compilation of selected
posts of his useful blog. As it is beautifully explained
in Lipton’s poetic version of the events, “Kurt Gödel is
walking along through the falling snow, he is thinking.
Gödel is the greatest logician of his time, perhaps of all
times, yet he is deeply troubled. He has found a prob-
lem he cannot solve. The problem concerns a simple
but fundamental question. Suddenly he smiles, he has
an idea. If he cannot solve the problem, then he will
write a letter explaining it to John von Neumann; per-
haps John will be able to solve the problem. After all
John von Neumann has one of the fastest minds in the
world. Gödel pulls his scarf tighter, gets his bearings in
the heavy falling snow, and heads to his office to write
his letter”.

In his letter, Gödel considered the truncated Entsc-
heidungsproblem problem: “Given any statement in
first-order logic (for example ∃x, y, z, n ∈ ℕ - {0} : (n
≥ 3) ⋀ (xn + yn = zn)) decide if there is a proof of the
statement with finite length of at most m lines, where
m could be any large (1010) constant. As any math-
ematical proof could be represented using a small
constant number c of symbols, the problem is decid-
able; just construct all the exponentially many cm pos-
sible proofs of length m, over the finite alphabet, and
check if any of them works. Notice that most of the
proofs will be gibberish. Moreover, for large m, there
is a chance that the process could take longer than the
existence of the earth! (see Fig. 1). Gödel in his letter
asked if it was possible to do it in O(m2) steps, mak-
ing explicit the possible partition between decidable
problems solved in polynomial time, and decidable
problems that cannot be solved in polynomial time.

During the 1960’s, the existence of easy and hard
problems started to be more obvious to researchers.
As computers were solving problems with increas-
ing input size, researchers begin to consider the ef-
fect of input size on the computation time (number of
steps) and space (number of cells visited), using the
Turing machine as the computational model. An im-
portant contribution appeared in 1965 by Hartmanis
and Stearns (1965), which defined the multi-tape Tur-
ing machine and laid the foundations of complexity

theory. The same year, Edmonds (1965) gave an infor-
mal description of non-deterministic polynomial-time
problems, i.e., those that permit verifying in polyno-
mial time whether a guessed hypothetical solution is
indeed a correct solution to the problem. Nondeter-
minism would play a key role in the development of
computational complexity theory. A nondeterministic
algorithm could be seen as a game where a compu-
tationally omnipotent prover P provides a witness
to the solution of the problem, and a verifier has to
prove deterministically that the witness is indeed a
correct solution.

Consider the problem of the satisfiability of a con-
junctive normal form (SAT): “Given a set of Boolean
variables X and a Boolean formula 𝚽 on X in conjunc-
tive normal form, decide if there is an assignment A :
X → {T, F} (truth, false) such that it satisfies 𝚽” (eval-
uates 𝚽 to T). A conjunctive normal form formula con-
sists of the conjunction of clauses, where each clause
is a disjunction of literals (Boolean variables or their
negation). For example, if X = {x1, x2, x3, x4}, consider
the Boolean formula

A backtracking deterministic algorithm would find
an assignment satisfying 𝚽. In a nondeterministic al-
gorithm, P would supply as witness an assignment A
(for example, A(x1) = A(x4) = T, A(x2) = A(x3) = F)
and V would have to verify that the substitution of
such an assignment makes 𝚽 satisfiable. Note that if
𝚽 has input size n (length of 𝚽), V could verify wheth-
er the assignment satisfies 𝚽 in O(n) steps.

In 1971 Stephen Cook showed that the SAT problem
was a paradigmatic unfeasible problem in the sense
that any problem that could be solved4 in polynomial
time by a nondeterministic Turing machine could be
reduced to the SAT problem, where the reducibility is
the same concept as Turing-reducibility but imposing
the condition that the construction should be done in
polynomial time (Cook, 1971). The paper was present-
ed at the STOC-71 conference, and again using the
Lipton (2010) description: “A tall figure walks slowly
to the front of the conference room. Steve Cook is a
young scientist, who is about to change the world. He
has independently discovered the problem that trou-
bled Gödel that snowy day. He gives his talk, and after
there is a polite applause, as there is for every talk”.

http://dx.doi.org/10.3989/arbor.2013.763n5011

ARBOR Vol. 189-764, noviembre-diciembre 2013, a080. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6003

Turing’s algorithm
ic lens: From

 com
putability to com

plexity theory

6

a080

One attendee who understood perfectly the mean-
ing of Cook’s result was Richard Karp, who the follow-
ing year published a seminal paper formally defining
the classes P, NP and NP-complete, and provided the
proof that nine well-known problems were in the class
NP-complete (Karp, 1972). His starting seed was that
SAT Є NP-complete, which he coined as Cook’s Theo-
rem. At the same time, but independently from Cook
and Karp, a Russian mathematician, Leonid Levin, was
basically defining the class NP-complete (Levin, 1973),
the article appeared translated into English the same
1973, but it took a while for the community working
in complexity theory to realize the meaning of Levin’s
result (see Trakhtenbrot, 1984 for a history of early
complexity theory developments in Russia). Today the
result that SAT is NP-complete is known as the Cook-
Levin Theorem.

We next give an intuitive description of the com-
plexity classes. For a more technical description the
reader is referred to any of the complexity or algorith-
mic books listed in the bibliography of this paper.

P is the class of problems for which there is a de-
terministic algorithm finding a solution in polynomial
time, for any input.

NP is the class of problems such that if an omnis-
cient prover P provides a polynomial-length witness
to the solution of the problem, a verifier V can prove
in polynomial time whether the witness is indeed cor-
rect. The term NP stands for non-deterministic poly-
nomial time.

From the previous remarks on the SAT problem, it
is clear that SAT ∈ NP: P supplies a valid assignment
and V checks in linear time that the assignment satis-
fies the formula. However, if we consider a combina-
torial optimization problem, as the chromatic number
of a graph, it is not so easy. Given an input G = (V, E),
the chromatic number problem consists of finding a
minimum valid coloring χ* for G” , i.e., assigning the
minimum number of colors to V such that for every
edge (u,v) ∈ E, χ* (u) ≠ χ* (v). To prove this prob-
lem is not in NP, assume that P provides a witness χ*
to the colorability of V, then V tests that indeed χ* is
a valid coloring by looking at every edge of G, which
has a cost of O(n2). Moreover, V must also verify that
there is no other valid coloring with less colors that
χ*, i.e., he must compare with all other possible valid
colorings for G, which could be exponential. There-
fore, the problem is not in NP.

To circumvent this difficulty, we consider the search
version of the combinatorial optimization problem,

where as a part of the input we also are given a value
b that the cost function can take. If the optimization
problem demands to maximize, the search version
would require that k(x) ≥ b, and if it is a minimization
problem the search version would require k(x) ≤ b.

Continuing with the example, the search version of
the chromatic number problem can be stated as fol-
lows: “Given as input G = (V, E) and a b > 0, find a valid
coloring χ of G such that |χ(V)| ≤ b”.

The search versions of optimization problems are
obviously in NP. Furthermore, by using binary search
it is a standard exercise to prove that if the search
version of an optimization problem can be solved in
polynomial time then the optimization version can
also be solved in polynomial time (see Exercise 8.1 in
Dasgupta, Papadimitriou and Vazirani, 2008).

Let us see some further examples of problems in P
and NP:

The primality problem: “Given an integer a with
length n = log a bits, decide whether a is prime”. There
is a non-trivial proof that primality Є NP due to V.
Pratt (1975), and for a long time it was open whether
the problem was in P. In 2002, Agrawal, Kayal and
Saxena provided a deterministic polynomial-time al-
gorithm to solve the primality problem, so the prob-
lem is in P (Agrawal, Kayal, and Saxena, 2002).

The factorization problem: “Given an integer a of n
bits, find its prime decomposition”. This is an impor-
tant problem as, among other things, it is the basis
of the RSA, one of the most used public-key cryp-
tographic systems (see Chapter 8 in Singh, 2000).
Factorization is in NP, since if P provides a witness
p1,…,pm, V can test that each pi is prime (using the al-
gorithm in Agrawal, Kayal, and Saxena, 2002) and see
that the product is the given number. Nevertheless,
it is an important open question whether there is a
polynomial-time algorithm to solve factorization5.

The problem of 3-satisfiability (3-SAT) is the particu-
lar case of SAT where every clause in the input has
exactly 3 literals. The problem is also in NP. However,
an easy greedy algorithm puts 2-satisfiability in the
class P.

Finally, the truncated Entscheidungsproblem is also
in NP, since if we get a proof of less than 1010 pages
as a certificate, any mathematician can verify in a rea-
sonable time (polynomial in 1010) whether it is cor-
rect (independently that there exist other valid proofs
among the exponential number of generated ones).

http://dx.doi.org/10.3989/arbor.2013.763n5011

ARBOR Vol. 189-764, noviembre-diciembre 2013, a080. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6003

Josep D
íaz &

 Carm
e Torras

7

a080

Notice that P ⊆ NP. If V can obtain a determinis-
tic solution in polynomial time, he can also verify it in
polynomial time.

The problem to decide whether P=NP was consid-
ered one of the nine millennium problems posed by
the Clay Mathematics Institute in the year 2000. A 107
US$ prize is awarded for each solution to one of the
problems.

The answer P≠NP would mean that, for many im-
portant search problems, finding is more difficult than
verifying. If, on the contrary, the answer is P=NP, then
there would be a feasible algorithm for the truncated
Entscheidungsproblem, i.e., proofs with a large but fi-
nite number of lines, which in practice would suffice
for most mathematical theorems.

4.2 Karp reducibility and NP-completeness

To further study the relationship between search
problems and the P=NP question, Karp defined the fol-
lowing simplified variation of Turing-reducibility: Given
search problems A and B, with sets of instances IA and IB
and sets of solutions SA and SB , a Karp reduction from A
to B (A ≤P B) is a polynomial-time computable function
f: IA → IB such that for any input x Є IA , f(x)has a
solution in SB iff x has a solution in SA.

In other words, if A ≤P B and we have a polynomial-
time algorithm AB to solve B then we have a polyno-
mial-time algorithm to solve A, for any x Є IA comput-
ed in polynomial time AB (f(x)). Notice, a polynomial
algorithm to solve A does not imply anything about
the existence of a polynomial algorithm to solve B.

A search problem B is NP-complete if B Є NP and for
any NP problem A, we have A ≤P B.

A useful property of reductions is that they are
transitive. This property, together with the previous
remark about reductions as problems solvers, tells us
that the class NP-complete is the most difficult class
of NP problems, in the sense that if one NP-complete
problem is known to be in P then P=NP.

It is known that if P≠NP, there would be problems in
NP that are neither in P nor NP-complete. These are in
the class NP-intermediate (see Figure 2).

It is beyond the scope of this paper to show de-
tailed reductions between NP-complete problems,
which can be found in any standard algorithmic book,
see for example Garey and Johnson, 1979; Moore
and Mertens, 2011. But we would like to enumerate
a few more examples of problems NP-complete and

Figure 2: Complexity classes inside NP

NP-intermediate. For a full taxonomy of NP-complete
problems see Crescenzi and Kann (2012).

As already mentioned, SAT was the first problem
known to be NP-complete; 3-SAT, the truncated Entsc-
heidungsproblem, and chromatic number of a graph
are also NP-complete problems. Factoring an integer
as a product of primes is in NP-intermediate. Another
significant problem in the class NP-intermediate is
graph isomorphism: Given two graphs G1 = (V1, E1) and
G2 = (V2, E2), find if there is a permutation π: V1 → V2
such that (u, v) Є E1 iff (π(u), π(v)) Є E2.

Consider the 3-coloring of a graph problem: “Given
input graph G = (V, E), decide if there is a valid coloring
of V with exactly 3 colors” (see Figure 3). The problem is
in NP: if P provides a 3-color witness χ, then V can ver-
ify in O(|V|2) whether χ is a valid coloring. It is known
that this problem is NP-complete. Deciding whether a
graph is 2-colorable and, if so, finding the coloring is in
P (Dasgupta, Papadimitriou and Vazirani, 2008).

The following example taken from Moore and
Mertens (2011, p. 152) shows that NP-completeness
can appear in calculus problems. The cosine integra-
tion problem: “Given integers x1, ... , xn , decide if

The class NP-complete contains many everyday
practical problems. There is a series of problems deal-
ing with minimizing delivery costs or time, which de-
rive from the Traveling Salesman Problem (TSP). The
search version of TSP has as input a complete graph G
= (V, E), with a weight w(vi , vj) ≥ 0 on each edge (vi, vj),
together with a value c, the goal is to find a tour visit-
ing all vertices exactly once, such that

http://dx.doi.org/10.3989/arbor.2013.763n5011

ARBOR Vol. 189-764, noviembre-diciembre 2013, a080. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6003

Turing’s algorithm
ic lens: From

 com
putability to com

plexity theory

8

a080

This problem is NP-complete. Another important
This problem is NP-complete. Another important set of
practical problems derive from the job scheduling prob-
lem. In its most general setting, the problem can be for-
mulated as follows: “Given n jobs J1,... Jn, where each Jk
has a processing time tk, and given m identical machines
M1,..., Mm, then each job Jk must run on a machine Mi
for tk consecutive units of time, and during that time no
other job can run on the same machine. The problem
is to find an assignment of jobs to machines such that it
minimizes the makespan of the schedule

where Ti denotes the time at which machine Mi com-
pletes its jobs”. The search version of the problem is
NP-complete for m > 2. For more information on the
problem and its variations, see Brucker (2006).

As a final example, we would like to present evi-
dence of the influence of the P versus NP prob-
lem in other disciplines, for example, economics.
The Efficient Market Hypothesis (EMH) states that
future prices cannot be predicted by analyzing
prices from the past (Fama, 1965). In an enjoyable
recent paper by the economist P. Maymin (2011),
he proves that the EMH is false iff P=NP. For peo-
ple with a little background in complexity theory,
the paper is quite straightforward, still it presents
a clear example of the spread of complexity theory
to other fields.

4.3 Coping with NP-completeness

What can be done when having to deal with an NP-
complete problem? For inputs of very small size n,
a complexity of O(2n) or O(n!) can be computed in
reasonable computer time, but as we showed in Fig-

ure 1, the problem becomes intractable as n grows.
Nevertheless, it turns out that for some NP-com-
plete problems there are only a few “bad” inputs.
The worst-case complexity assumes that there is a
devil adversary that chooses the worst possible in-
stance of the problem. In the early 1990’s there was
empirical evidence that for some problems such as
graph coloring, satisfiability, integer partition, etc.,
there was a sharp jump from instances which were
easily solved to instances that were easily shown not
to have a solution, and just a few instances were dif-
ficult to solve. That phenomenon is denoted phase
transition as it is similar to the phenomena studied
by physics of sudden changes of states, between
solid, liquid and gas. For instance, consider the 3-SAT
problem. There is a well-know clever exhaustive
search algorithm for SAT, the Davis-Putnam-Loge-
mann-Loveland (DPLL), which was shown to solve
many random instances of 3-SAT in polynomial time
(Mitchell, Selman, and Levesque, 1992). To produce
a random instance for 3-SAT with n boolean variables
and m = rn clauses, one has to choose uniformly at
random each clause, with probability 1/(n

3) and then
go over the variables in each clause and negate each
with probability = 1/2. The density of one of these
formulae is defined as r = n/m.

For example, the random 3-SAT formula

has density r = 0.4.

Figure 3: 3-colorable G with a valid coloring

http://dx.doi.org/10.3989/arbor.2013.763n5011

ARBOR Vol. 189-764, noviembre-diciembre 2013, a080. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6003

Josep D
íaz &

 Carm
e Torras

9

a080

Mitchell, Selman, and Levesque (1992) first experi-
mentally showed that the number of random 3-SAT
formulae for which the DPLL algorithm took exponen-
tial time was small (see Figure 4a). Moreover, their ex-
periments also showed that, with high probability, for
densities r < 4.2 random 3-SAT formulae are satisfiable
and for r > 4.2 random 3-SAT formulae are not satisfi-
able (see Figure 4b).

In 2002, using non-rigorous techniques from statisti-
cal physics (the replica method) on very large instanc-
es of 3-SAT, Mézard, Parisi and Zecchina (2002) and
Mézard and Zecchina (2002) showed that the thresh-
old for 3-SAT occurs at formulae with density rc = 4.27,
i.e., random 3-SAT formulae with density < 4.27 are
satisfiable with high probability, and random 3-SAT
formulae with density < 4.27 are satisfiable with high
probability, and radom 3-SAT formulae with density >
4.27 are NOT satisfiable with high probability. Since
then, there has been an effort to establish this sharp
phase transition by rigorous analytical methods. So
far for 3-SAT, the best lower bound is 3.52 (Hajiaghayi
and Sorkin, 2003; Kaporis, Kirousis and Lalas, 2006)
and the corresponding upper bound is 4.4907 (Díaz,
Kirousis, Mitsche and Pérez, 2009). Closing the gap re-
mains an open problem. See Chapter 14 in Moore and
Mertens (2011).

The fact that some NP-complete problems have a not
too large number of bad instances indicates that some-
times heuristics can be used to achieve good results.
Heuristics are procedures with no guarantees either in
the running time or on the accuracy of the obtained
solution, but for many hard problems, like for example,
the layout of VLSI circuits, heuristics are the best practi-
cal solution (Wolf, 2011). Some modern textbooks on al-
gorithms include a chapter on heuristics, clever backtracking
techniques, like the DPLL algorithm we mentioned for solv-
ing SAT, simulated annealing or different versions of local
search. For a general textbook on heuristics see Michale-
wicz and Fogel (1998).

Another practical alternative is using approximation
algorithms. An algorithm is said to r-approximate an
optimization problem if, on every input, the algorithm
finds a solution whose cost is ≤ 1/r if the problem asks
for the minimum value, or ≥ 1/r if the problem asks for
a maximum value.

Almost since the beginning of the development of
complexity theory, there was a parallel effort to develop
approximation algorithms for NP-complete problems. Al-
though the first such algorithm is due to Graham in 1966,
who developed it to approximate a version of scheduling,
the seminal paper for approximation theory by Johnson

Figure 4: Experiments with random 3-SAT formulae, from Mitchell, Selman, and Levesque (1992). In (a) each dot
represents the time DPLL takes on a random instance of 3-SAT. Light dots represent satisfiable instances and dark
dots represent non-satisfiable instances. (b) The phase transition satisfiable to non-satisfiable for a random 3-SAT
formula occurs at density 4.27.

http://dx.doi.org/10.3989/arbor.2013.763n5011

ARBOR Vol. 189-764, noviembre-diciembre 2013, a080. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6003

Turing’s algorithm
ic lens: From

 com
putability to com

plexity theory

10

a080

(1974) came very little after Cook, Levin and Karp’s papers.
Since then, the theory of approximation and of inapprox
imability has become a very fruitful field in theoretical
computer science, with good books covering the topic,
for example Williamson and Smoys, 2010.

Parallelism is another powerful tool to speed up com-
putation by a constant factor. Notice that anything that
can be done with 1010 processors in T steps, can be done
with one processor in 1010T steps. But unless P=NP, the
difference between P and NP-complete problems is an
exponential cost of computation, therefore parallelism
would not be the tool to solve NP-complete problems in
polynomial time.

In the same way, a result by Impagliazzo and Widg-
erson (1997) implies that, unless P=NP, randomization
would not help to solve NP-complete problems. In fact,
there is a stronger conjecture: randomization mainly
helps to improve the time complexity of problems in P.

At the present time, quantum computers are not an ex-
isting reality, although D-Wave Systems, Inc. has managed
to build a 128-qubit processor (not general purpose). At
the theory level, we know quantum computation could
solve NP-intermediate problems, for example factorization
of an integer (Shor, 1997), but it is generally agreed that,
unless P=NP, quantum computation would not help with
NP-complete problems (Bernstein and Vazirani, 1997).
See Aaronson (2008) for an extensive discussion on the
limitations of quantum computers.

5. Beyond Turing: Interactive Proofs and
Zero-Knowledge Proofs

A fascinating line of research in theoretical com-
puter science started in the mid 1980’s, which led
to fruitful results, namely Interactive Proofs. In this
section, we aim to give a brief intuitive introduction
to the topic, in particular to Zero-Knowledge Proofs
(ZKP) and Probabilistically Checkable Proofs (PCP). For
the interested reader, we recommend Chapter 11 in
Moore and Mertens (2011) and Chapters 8, 9 and 11
in Arora and Barak (2009). The topic has spanned 26
years, with numerous papers and fruitful applications
in various fields, such as cryptography and approxima-
tion algorithms, among others.

The basic idea is how one researcher (the prover P)
can convince another researcher (the verifier V)6 that
he has a correct proof to a difficult theorem by only
showing to V a few random bits of the proof, in such a
way that at the end V is convinced that the proof is cor-
rect without having any insight into how it works.

To grasp the concept of zero-knowledge proof, let
us start with the very simple illustrative example from
Quisquater, Quisquater, Quisquater, Quisquater, Guil-
lou, Guillou, Guillou, Guillou, Guillou, Guillou, and
Berson (1989)7. There is a cave with two paths A and
B, which are connected at their ends by a secret pas-
sage (see Figure 5). To cross that passage one must
know the magic words. In our case, P wants to con-
vince V that he knows the magic words without tell-
ing them to V. They agree on the following protocol:
V will remain outside of the cave, so he cannot see
which path P takes. When P arrives at the end of the
cave, V tells P which path to return along, and V en-
ters the cave to make sure P is returning for the path
he indicated. The probability that P took the path V
asks him to return is 1/2, therefore if the experiment
is repeated a sufficiently large number of times, and
each time P returns by the correct path, with prob-
ability 1 P must know the magic words to cross the
cave, and V is convinced that P knows them.

ZKP are a particular case of the most general Inter-
active Proofs Systems, introduced concurrently in Ba-
bai (1985) and Goldwasser, Micali and Rackoff (1989)8.
Technically the word proof refers to a randomized
interactive protocol between P and V, where P has
unlimited computational capabilities and tries to con-
vince V of the truth of a certain statement. Loosely
speaking, the two characteristics that an interactive
protocol must have to be an interactive proof is that
an honest V should always be convinced by an honest
P , but a cheater P should have a very small probabil-
ity of convincing an honest V that a false statement is
true. The interactive proof system is zero-knowledge
if V is not going to learn anything from the interac-
tion with P. In the previous example, V becomes
convinced that P knows the magic words to cross be-
tween the two paths.

Figure 5: Ali Baba’s magic cave.

http://dx.doi.org/10.3989/arbor.2013.763n5011

ARBOR Vol. 189-764, noviembre-diciembre 2013, a080. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6003

Josep D
íaz &

 Carm
e Torras

11

a080

Let us describe a more interesting example. Consid-
er a given graph G = (V, E), where 􏿖 V 􏿖 = n and 􏿖 E 􏿖 = m.
As we saw before, to decide whether G has chromatic
number 3 is an NP-complete problem, therefore in
general it is not a feasible problem to solve for large
values of n. In this setting, P wants to convince V that
he has a valid 3-coloring of G, without revealing the
coloring. This example is from Goldreich, Micali and
Wigderson (1991). At each iteration of the protocol, V
only has access to the colorings at the ends of a single
edge he chooses at the iteration. The protocol is the
following: First P selects a valid 3-coloring (for every
(􏷙, 􏷚) ⋲ E, u and v must have different colors) and
generates all 3! = 6 permutations of valid 3-colorings
for G; let C be the set of all 6 valid colorings. For n3
iterations, at each iteration i, P chooses with prob-
ability 1/6 a new coloring ci ⋲ C , V selects an edge
and verifies that the edge is correctly colored. Assume
that G has a valid 3-coloring (see for example Figure
3). Notice that if V chooses the same edge (u, v) at
two different iterations, the colors assigned to each
vertex may be different, as at each iteration P chooses
a new random coloring, therefore V will not be able
to learn a valid coloring for the whole G. On the other
hand, if G is not 3-colorable, at each round, at least
one edge will have the same color for both vertices,
therefore the probability that V will discover a wrong
edge is at least 1/m per round. As m ≤ n2, after n3 itera-
tions with probability tending to 1, V will discover that
G is not 3-colorable.

Technically the way P shows the colors to V is a bit
more complicated, using a one-way-function. One-way-
functions are functions that can be easily computed but
are hard (exponential time) to invert. A trivial example
of one-way-function is integer multiplication: it is easy
to multiply m = al x a2 x ... x an, however as we already
mentioned, there is no known polynomial-time algo-
rithm for factorizing m. Another more interesting ex
ample of a one-way-function is the discrete logarithm:
“Given n-bit integers x, y, z, find whether there exists
an integer w such that y = xw mod z”. Given x, w and z,
it is easy to compute y = f (x, w, z) = xw mod z, but it is
conjectured that finding f −1(y) takes exponential time.
One-way-functions are in standard use in cryptography.

By applying reductions to the 3-colorability prob-
lem, it was shown in Goldreich, Micali and Wigderson
(1991) that under the assumption of the existence
of one-way-functions, every problem in class NP has
a zero-knowledge proof. In fact, if we denote IP the
class of problems having an interactive protocol, it
is known that IP, as a complexity class, contains far

more difficult problems than NP (under the hypoth-
esis P≠NP) (Shamir, 1992). Computing the permanent
of a matrix is a problem in the class IP, which means
that even under the hypothesis P=NP, it would remain
a hard problem.

The culmination of interactive proof systems re-
search was one of the most beautiful and deep theo-
rems in computer science, the PCP-theorem. Although
the Gödel prize 2001 was shared by Arora and Safra
(1998), Arora, Lund, Motwani, Sudan and Szegedy
(1998) and Feigue, Goldwasser, Lovasz, Safra, and
Szegedy (1996) for their contribution to Probabilisti-
cally Checkable Proofs and the PCP-theorem, many
of the techniques and ideas are due to a much larg-
er number of researchers (see for example Johnson
(1992) for an extensive historical account, and Chap-
ter 16 in Williamson and Smoys (2010) for further re-
cent work using the PCP-theorem to obtain inapproxi-
mability results).

The rough idea of probabilistically checkable proof
systems is: “Given a conventional mathematical proof
in which a mistake could be hidden in any equation,
transform the proof in such a way that the mistake
is spread almost everywhere”. This kind of proof is
denoted a holographic proof. A PCP system for an NP
problem encodes the witness to the problem in a way
such that V can verify probabilistically the witness by
looking only to a few of its bits, so that if it is true V
accepts with probability 1, and if it is false V accepts
with probability < 1/2.

The PCP-theorem states that holographic proofs ex-
ist for problems in NP, i.e., that any problem in NP has
a polynomial length probabilistically checkable proof,
where V flips O(log n) random coins and need to look
only at O(1) bits of the proof.

6. CONCLUSIONS

Contrary to Hilbert’s Entscheidungsproblem, it re-
mains an open problem to decide whether the trun-
cated Entscheidungsproblem is feasible, i.e., it re-
mains open to decide whether P=NP. It follows from
the arguments in the present paper that a positive an-
swer to that question may answer all seven remaining
open millennium problems.

At least there are 54 existing bogus proofs of the
P=NP question. Of them, 26 “proving” the equality,
24 “proving” the strict inclusion, and 3 “proving” that
the P=NP question is itself undecidable. For further
details see Woeginger. Most scientists working in
complexity theory believe that P ≠ NP, but there are

http://dx.doi.org/10.3989/arbor.2013.763n5011

ARBOR Vol. 189-764, noviembre-diciembre 2013, a080. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6003

Turing’s algorithm
ic lens: From

 com
putability to com

plexity theory

12

a080

some top scientists in the field that disagree with the
majority, see for instance Lipton’s blog.

The aim of this manuscript was not to review the
complexity field or the status and future of the P=NP
question. As we pointed out, there are some outstand-
ing textbooks dealing with all the past, present and fu-
ture attempts and results in complexity. Our only incur-
sion into the areas of modern complexity has been the
topic of interactive proofs, and this is because we think
that it is a natural continuation to the truncated Entsc-
heidungsproblem, in the sense that PCP basically tells
us how to convince our colleagues that we have a cor-
rect proof without giving away any real details. Moreo-
ver, it turns out that PCP is a strong characterization of
NP problems. Could we one day even have a practical
holographic way to check proofs?

Complexity theory has studied different models of
computation (Turing machine with bounded number
of steps, Boolean circuits, quantum algorithms, rand-
omized algorithms), the complexity of measuring dif-
ferent parameters (space, number of iterations, depth
of circuits), and several measures of complexity (worst

case, average, smoothed). All this work has created a
whole cosmos of about 500 complexity classes (Aar-
onson, Kuperberg and Granade). For most of them,
strict relations are not known and, at the end, the
main issue boils down to the basic intuition by Kurt
Gödel in 1954.

We tried to convey the idea that this is one of the
deepest questions of today’s science, affecting not
only computer science, mathematics and physics, but
also biology, sociology, economics and most human
activities. We see this broad coverage of this question
as a direct consequence of Turing’s way of looking
through the algorithmic lens to problems in different
disciplines, from cryptography and physics to biology.
The spread of modern technologies is accelerating the
need for an algorithmic view of today’s social, eco-
nomical, cultural, and political interactions, leading
directly to the question P=NP? For an excellent survey
of the role of the algorithmic view into the activities
within the modern world, we recommend the book
by Easley and Kleinberg (Easley and Kleinberg, 2010).

NOTES

1 In parallel to Turing, A. Church also gave
a negative answer to the Entschei-
dungsproblem using a logic formalism,
λ-calculus.

2 The complexity is expressed in asympto-
tic notation, i.e., for very large values of
the input. The notation T(n) = O(f (n))
means that limn→∞ T(n)/f(n) = c , where
c is a constant.

3 It may happen that there is no feasible
solution for input x, then k(x, s) does
not exist.

4 The correct word is recognized, as the
problems are posed as recognition
problems, i.e. determining whether a
word belongs to a language over a finite
alphabet.

5 A positive answer will render all transac-
tions done using RSA insecure.

6 In a large part of the scientific bibliogra-
phy, the prover and the verifier are res-
pectively named Merlin and Arthur.

7 The authors frame their explanation in
the arabic tale “Ali Baba and the forty
thieves” from the classic “One thousand
and one nights”.

8 The conference version of Goldwasser,
Micali and Rackoff (1989) appeared at
STOC-85.

references

Aaronson, S. (2008). “The limits of quan-
tum computers”. Scientific American,
289, pp. 62-69.

Aaronson, S.; Kuperberg, G. and Granade,
C. Complexity Zoo. http://qwiki.stan-
ford.edu/index.php/Complexity_Zoo.

Agrawal, M.; Kayal, N. and Saxena, N.
(2002). “Primes is in P”. Annals of Ma-
thematics, 2, pp. 781-793.

Arora, S. and Barak, B. (2009). Computa-
tional Complexity: A Modern Approach.
Cambridge University Press.

Arora, S.; Lund, C.; Motwani, R.; Sudan, M.
and Szegedy, M. (1998). “Proof verifica-

tion and the hardness of approximation
problems”. Journal of the ACM, 45 (3),
pp. 501-555.

Arora, S. and Safra, S. (1998). “Probabilistic
checking of proofs: A new characteriza-
tion of NP”. Journal of the ACM, 45 (1),
pp. 70-122.

Babai, L. (1985). “Trading group theory for
randomness”. In Proc. 17th. ACM Sym-
posium on the Theory of Computing,
pages 421-429.

Bernstein, E. and Vazirani, U. V. (1997).
“Quantum complexity theory”. SIAM Jo-
urnal Computing, 26 (5), pp. 1411-1473.

Brucker, P. (2006). Scheduling Algorithms.
Springer, fifth edition.

Cook, S. (1971). “The complexity of theo-
rem-proving procedures”. In 3rd. ACM
Symposium on the Theory of Compu-
ting, pages 151-158.

Cormen, T. H.; Leiserson, C.; Rivest, R. and
Stein, C. (2001). Introduction to Algori-
thms. The MIT Press, 3 edition.

Crescenzi, P. and Kann, V. (2012). A com-
pendium of NP optimization problems.

Dasgupta, S.; Papadimitriou, C. and Vazira-
ni, U. (2008). Algorithms. McGraw-Hill.

http://dx.doi.org/10.3989/arbor.2013.763n5011
http://qwiki.stanford.edu/index.php/Complexity_Zoo.
http://qwiki.stanford.edu/index.php/Complexity_Zoo.

ARBOR Vol. 189-764, noviembre-diciembre 2013, a080. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6003

Josep D
íaz &

 Carm
e Torras

13

a080

Davis, M. (2000). The universal computer:
the road from Leibniz to Turing. Norton.

Díaz, J.; Kirousis, L.; Mitsche, D. and Pérez,
X. (2009). “On the satisfiability thres-
hold of formulae with three literals per
clause”. Theoretical Computer Science,
410, pp. 2920-2934.

Doxiadis, A.; Papadimitriou, C.; Papadatos,
A. and di Donna, A. (2009). LOGICOMIX:
an epic search for truth. Bloomsbury.

Easley, D. and Kleinberg, J. (2010). Net-
works, Crowds and Markets. Reasoning
about a highly connected world. Cam-
bridge University Press.

Edmonds, J. (1965). “Paths, trees, and
flowers”. Canad. J. Math., 17, pp. 449-
467.

Fama, E. (1965). “The behavior of stock-
market prices”. The Journal of Business,
38 (1), pp. 34-105.

Feigue, U.; Goldwasser, S.; Lovasz, L.; Safra,
S. and Szegedy, M. (1996). “Interactive
proofs and the hardness of approxima-
ting cliques”. Journal of the ACM, 43 (2),
pp. 268-292.

Garey, M. R. and Johnson, D. S. (1979). Com-
puters and Intractability: A Guide to the
Theory of NP-Completeness. Freeman.

Glynn, D. G. (2010). “The permanent of a
square matrix”. European J. of Combina-
torics, 31 (7), pp. 1887-1891.

Goldreich, O.; Micali, S. and Wigderson, A.
(1991). “Proofs that yield nothing but
their validity or all languages in NP have
Zero-Knowledge Proof Systems”. Jour-
nal of the ACM, 38 (1), pp. 691-729.

Goldwasser, S.; Micali, S. and Rackoff, C.
(1989). “The knowledge complexity of
interactive proof systems”. SIAM J. Com-
puting, 18 (1), pp. 186-208.

Graham, R. (1966). “Bounds for certain
multiprocessing anomalies”. Bell System
Technology Journal, 45, pp. 1563-1581.

Hajiaghayi, M. T. and Sorkin, G. (2003). The
satisfiability threshold of random 3-SAT
is at least 3.52. Technical report, IBM
Research Report.

Hartmanis, J. and Steam, R. (1965). “On
the computational complexity of algo-
rithms”. Transactions of the American
Mathematical Society, 117, pp. 285-306.

Impagliazzo, R. and Wigderson, A. (1997).
“P = BPP if E requires exponential cir-
cuits: Derandomizing the XOR lemma”.
In Proceedings of tTwenty-Ninth Annual
ACM Symposium on the Theory of Com-
puting, pages 220-229.

Johnson, D. J. (1974). Approximation algo-
rithms for combinatorial problems. Jo-
urnal of Computer and System Sciences,
9, 256-278.

Johnson, D. S. (1992). “The NP-comple-
teness column. The tale of the second
prover”. Journal of Algorithms, 13 (3),
pp. 502-524.

Kaporis, A. C.; Kirousis, L. and Lalas, E. G.
(2006). “The probabilistic analysis of a
greedy satisfiability algorithm”. Random
Struct. Algorithms, 28 (4), pp. 444-480.

Karp, R. M. (1972). “Reducibility among
combinatorial problems”. In R. E. Miller
and J. W. Thatcher (eds.), Complexity of
Computer Computations, pp. 85-104.
NY: Plenum Press.

Levin, L. (1973). “Universal sequential
search problems”. Probl. Peredachi Inf.,
9, pp. 115-116.

Lipton, R. Godel’s lost letter and P = NP.
http://rjlipton.wordpress.com.

Lipton, R. (2010). The P=NP Question and
Godel’s Lost Letter. Springer.

Maymin, P. (2011). “Markets are efficient if
and only if P=NP”. Algorithmic Finance,
1, pp. 1-11.

Mezard, M.; Parisi, G. and Zecchina, R.
(2002). “Analytic and algorithmic solu-
tion of random satisfiability problems”.
Science, 297 (812).

Mezard, M. and Zecchina, R. (2002). “The
random k-satisfiability problem: from
an analytic solution to an efficient al-
gorithm”. Physics Review, E 66-056126.

Michalewicz, Z. and Fogel, D. (1998). How
to solve it: Modern Heuristics. Springer.

Mitchell, D.; Selman, B. and Levesque, H.
(1992). “Hard and easy distributions
of sat problems”. In Proceedings of the
10th. National Conference on Artificial
Intelligence (AAAI), pp. 459-465.

Moore, C. and Mertens, S. (2011). The Nature
of Computation. Oxford University Press.

Nissan, N. (2004). John Nash’s letter to
the NSA. http: //agtb.wordpress.
com/2012/02/17/john-nashs-letter-to-
the-nsa/, February 17.

Pratt, V. R. (1975). “Every prime has a suc-
cinct certificate”. SIAM J. Comput., 4 (3),
pp. 214-220.

Quisquater, J.-J.; Quisquater, M.; Quisqua-
ter, M.; Quisquater, M.; Guillou, L. C.;
Guillou, M. A.; Guillou, G.; Guillou, A.;
Guillou, G.; Guillou, S. and Berson, T. A.
(1989). “How to explain zero-knowled-
ge protocols to your children”. In G.
Brassard, editor, CRYPTO-89, volume
435 of Lecture Notes in Computer Scien-
ce, pp. 628-631. Springer.

Shamir, A. (1992). “IP = PSPACE”. Journal of
the ACM, 39 (4), pp. 869-877.

Shor, P. W. (1997). “Polynomial-time algori-
thms for prime factorization and discre-
te logarithms on a quantum computer”.
SIAM J. Comput., 26 (5), pp. 1484-1509.

Singh, S. (2000). The Code Book. Anchor Books.

Trakhtenbrot, B. (1984). “A survey of rus-
sian approaches to perebor (brute-force
searches) algorithms”. Annals of the His-
tory of Computing, 6 (4), pp. 384-400.

Turing, A. M. (1939). Systems of logic based
on ordinals. Proceedings of the London
Mathematical Society-2, 45, pp. 161-228.

Valiant, L. G. (1979). “The complexity of
enumeration and reliability problems”.
SIAM J on Computing, 8, pp. 410-421.

Williamson, D. and Smoys, D. (2010). The
Design of Approximation Algorithms.
Cambridge University Press.

Woeginger, G. The P vs. NP page. http://www.
win.tue.nl/ gwoegi/P-versus-NP.htm.

Wolf, W. (2011). Modern VLSI Design. Pren-
tice-Hall, fourth edition.

http://dx.doi.org/10.3989/arbor.2013.763n5011
http://rjlipton.wordpress.com
.com/2012/02/17/john-nashs-letter-to-the-nsa/,
.com/2012/02/17/john-nashs-letter-to-the-nsa/,
.com/2012/02/17/john-nashs-letter-to-the-nsa/,

