
ARBOR Ciencia, Pensamiento y Cultura

Vol. 189-764, noviembre-diciembre 2013, a083 | ISSN-L: 0210-1963

doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

ALAN TURING AND THE ORIGINS
OF COMPLEXITY

ALAN TURING Y LOS ORÍGENES
DE LA COMPLEJIDAD

Miguel-Angel Martin-Delgado
Departamento de Física Teórica I, Universidad Complutense,

28040 Madrid, Spain
mardel@miranda.fis.ucm.es

RESUMEN: El 75 aniversario del artículo seminal de Turing
y el centenario de su nacimiento ocurren en 2011 y 2012,
respectivamente. Es natural revisar y valorar las contribuciones
que hizo Turing en campos muy diversos a la luz de los desarrollos
que sus pensamientos han producido en muchas comunidades
científicas. Aquí, la idea principal es discutir como el trabajo de
Turing nos permite cambiar nuestra visión sobre los fundamentos
de las Matemáticas, de forma similar a como la mecánica
cuántica cambió nuestra concepción de la Física. Nociones
básicas como compatibilidad y universalidad se discuten en un
contexto amplio, haciendo énfasis especial en como a la noción
de complejidad se le puede dar un significado preciso después de
Turing, es decir, no solo cualitativo sino cuantitativo. Al trabajo de
Turing se le da una perspectiva histórica en relación a algunos de
sus precursores, contemporáneos y matemáticos que tomaron y
llevaron sus ideas aún más allá.

PALABRAS CLAVE: Máquina de Turing; Computabilidad;
Complejidad Algorítmica; Complejidad Computacional; Clases
de Complejidad; Omega de Chaitin; Entropía Algorítmica;
Barrera de Turing.

ABSTRACT: The 75th anniversary of Turing’s seminal paper and
his centennial anniversary occur in 2011 and 2012, respectively.
It is natural to review and assess Turing’s contributions in
diverse fields in the light of new developments that his
thought has triggered in many scientific communities. Here,
the main idea is to discuss how the work of Turing allows us to
change our views on the foundations of Mathematics, much
as quantum mechanics changed our conception of the world
of Physics. Basic notions like computability and universality
are discussed in a broad context, placing special emphasis on
how the notion of complexity can be given a precise meaning
after Turing, i.e., not just qualitatively but also quantitatively
Turing’s work is given some historical perspective with respect
to some of his precursors, contemporaries and mathematicians
who took his ideas further.

KEYWORDS: Turing Machine; Computability; Algorithmic
Complexity; Computational Complexity; Complexity Classes;
Chaitin Omega; Algorithmic Entropy; Turing Barrier.

Citation/Cómo citar este artículo: Martin-Delgado, M. A.
(2013). “Alan Turing and the Origins of Complexity”. Ar-
bor, 189 (764): a083. doi: http://dx.doi.org/10.3989/
arbor.2013.764n6006

Copyright: © 2013 CSIC. This is an open-access article distributed
under the terms of the Creative Commons Attribution-Non
Commercial (by-nc) Spain 3.0 License.

Received: 10 July 2013. Accepted: 15 September 2013.

EL LEGADO DE ALAN TURING / THE LEGACY OF ALAN TURING

http://dx.doi.org/10.3989/arbor.2013.764n6006
http://dx.doi.org/10.3989/arbor.2013.764n6006
http://dx.doi.org/10.3989/arbor.2013.764n6006

ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

A
lan Turing and The O

rigins of Com
plexity

2

a083

I. INTRODUCTION

At the year of this writing, 2011, it is 75 years since
the seminal paper by Alan Mathison Turing (Turing,
1936) was published. And 2012 will mark the cente-
nary of his birth. This looks like a good occasion to
review and assess his work and impact and to See
how useful and vital it has become in so many aspects
and disciplines. As time goes by, the importance and
relevance of Turing’s seminal paper rises. Turing tran-
scends Mathematics and goes into other disciplines
like Physics, Engineering, etc. His work started as an
in-depth study of the very notion of what an algo-
rithm is, discarding what was irrelevant and targeting
the essence of a mechanical procedure with a new
notion of a theoretical machine. This very simple ma-
chine, the Turing machine, however turns out to be
extremely powerful and even universal. In this regard,
Turing’s work parallels Einstein’s on special relativity,
when Einstein went to make precise and explicit defi-
nitions of elementary concepts like distances, time in-
tervals, clock synchronization and the definition of an
inertial frame. Despite their simplicity, however the
consequences of Einstein’s principles revolutionized
the whole of Physics. Turing’s work is of a similar kind.

Turing made a gigantic effort to understand how the
human mind works at the level of finding mechanical
procedures to compute things and devise appropri-
ate definitions of what algorithms are (Turing, 1936).
His work represents a great deal of imagination and
creativity, which in turn has changed the notion of
creativity ever since, for creativity now can be made
quantitative using Turing’s work.

He invented the theory of computability. What is
more important, this affects the way Mathematics
must be understood at a fundamental level, the calcu-
lus. And he did more. His results have revolutionized
the way we address axioms, i.e., the very fundamen-
tals of Mathematical disciplines. He addressed ques-
tions such as when a set of axioms is complete, what
to do when it is not. Ultimately, this leads to the very
notion of mathematical creativity.

Turing has achieved considerable recognition in
Engineering Schools, such as Computer Science and
many others. However, it is rather disappointing to
see that the figure of Turing and his work still does not
have a central, pivotal role in the curricula of univer
sity mathematics departments, a fact which merits a
word or two. Firstly, Turing’s theory can be regarded
as the fundamental to what a calculation should be in
Mathematics. It underlines all previous knowledge on

calculus and analysis in Mathematics in a way that was
implicit before Turing. After Turing, it is systematized
in a way that it becomes mechanical and algorithmic:
the holy grail of any theory. Secondly, it affects the
way axioms have to be considered in Mathematics.
The big surprise is that Mathematics is not closed in
the sense predicted by David Hilbert, but it is an open
system capable of increasing its amount of knowledge
by adding new axioms to a discipline.

And the same goes for university physics depart-
ments, where the computer science part of in the cur-
ricula is mostly reduced to learning manuals of soft-
ware instead of the fundamentals of computation.
Manuals are changeable, version after version, but
Turing’s foundations on computability theory remain.

Turing’s work has led to the development of 3 major
disciplines:

Computability: it studies which problems can be
computed and which cannot be computed. This goes
to the very limits of what is knowable.

Complexity: once a problem is computable or solva-
ble, then we need to know how difficult is to compute
it. This can be quantified in various ways giving rise to
different notions of complexity: algorithmic complex-
ity, computational complexity and others that will be
considered in Sect. III, VI.

Universality: the new paradigm is to use a TM, the
basis of a real computer, in order to solve problems.
Then, we need to know how general these machines,
Turing machines, can be. Does every problem or re-
duced set of them require a particular TM? This is
another fundamental discovery, the notion of a Uni-
versal Turing Machine (UTM): a machine that can
simulate the functioning of any other TM. Here it is
important to study how many resources we need to
create such a UTM.

These disciplines are part of computer science as
envisaged by Turing and extend to many branches of
science like Physics, Mathematics, Engineering, etc.
This extension will increase with our better under-
standing of Nature and will apply to more descriptive
sciences like Biology.

From Turing’s work it is apparent that with a finite
set of axioms it is not possible to cover Mathematics
as a whole. There are irreducible truths, axioms that
are not self-evident in the sense of Euclid or Hilbert,
and must be added to as independent axioms. This
makes a TOE (Theory of Everything) of Mathematics
impossible.

http://dx.doi.org/10.3989/arbor.2013.764n6006

ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

M
iguel-A

ngel M
artin-D

elgado

3

a083

II. WHAT YOU CAN COMPUTE...

Turing was the first to separate software from
hardware in a very concrete way. He did that by first
focusing on the theoretical problem of having a well-
defined notion of a computing machine. In his later
years, he also got involved in constructing computing
machine in practice (Turing, 1946).

Turing first goal was to scrutinize all steps that a
person realizes during a calculation, like arithmetic,
and separate irrelevant aspects from the relevant
properties necessary to carry out the calculation.
In doing so, he realized that there were two main
ingredients: ‘local information’ and ‘state of mind’.
Local information means that at each calculation
step, only a small part of the whole operation is
being performed. State of mind means that the steps
after a local calculation is carried out, depend on the
rules stored in the person’s mind which defines the
calculation itself. Turing realized that it was enough to
use a one-dimensional roll of paper or pad to write
the intermediate (local) calculations and that the rules
of the state of mind could be also stored in a table of
operations. After this analysis, Turing came up with an
abstract construct of his machine.

Turing Machine: it is a finite-state machine with
3 components: i/ a doubly-infinite one-dimensional
tape where symbols from an alphabet were written
or read from square cells; ii/ a control unit that stores
the set of instructions in a table of specific operations;
iii/ a head that scans one cell of the tape at a time
and reads or writes alphabet symbols onto the tape
depending on the instructions in the control unit.
A more formal mathematical definition with the
concrete functioning, examples and diagrams can be
found in (Galindo, Martin-Delgado, 2002).

He was so convinced that this definition of machine
represented the most general possible algorithm for
calculus that he formulated the basic principle of
computation by means of his construction:

Turing Hypothesis: (also known as the Church-
Turing thesis):

“A function is computable, if and only if, it can be
computed by a Turing machine.”

Turing named his machine ̀ a-machine’ for automatic
machine (Turing, 1936). In essence, this statement is
more than a mathematical axiom, it is part of Physics
as it is a principle that tells us what we can compute
in our Universe.

A basic and fundamental result of the notion of a
TM is that the set of TMs is countable, infinitely de
numerable. It corresponds to bit-strings. Let 𝖃 := {Λ, 0,
1, 00, 01,10,11, 000, ...} be the set of finite strings of
binary bits, with Λ denoting the blank space symbol.
The size or number of bits is |x|. The set of infinite bit-
strings is denoted as 𝖃∞. A Turing Machine TM is an
application T: 𝖃 x 𝖃  𝖃 that takes an input data q ∈
𝖃 and a program p ∈ 𝖃 that acts on the input to produ-
ce an output string T(p, q) = x ∈ 𝖃 which is the result
of the computation, assuming it halts. When the in-
put data is empty, we simply write T(p) = x, and when
the output is simply stopping the computer with no
output, we write T(p) : halts.

However, the notion of a TM is tight to the compu-
tation of a given function or problem. Changing the
function means changing the TM. Here comes the no-
tion of universality as a property of a special TM that
can compute what any other TM can do.

Universal Turing Machine: denoted as UTM, it is a
construction based on set of instructions and states
in the control unit of a TM such that it can reproduce
the functioning of any other TM.

It is very remarkable that the definition of a TM
allows for this property of universality. The basic idea
behind the UTM is the observation that a TM T can be
described by a bit-string itself and supplied to another
TM T* along with input data q ∈ 𝖃. Thus, T* (T, q) will
produce the same result as T(q), thereby T* simulating
the functioning of any TM T.

In doing so, Turing was giving birth to program-
ming and compiling. A universal TM is the notion of
a general-purpose programmable computer today.
After Turing gave the first construction of a UTM (Tu-
ring, 1936), other constructions have been presen-
ted depending on the number of states used by the
machine and the number of symbols in the alphabet
(Shannon, 1956; Minsky, 1962), including small ones
(Rogozhin, 1996).

Von Neumann realized that Turing had achieved the
goal of defining the notion of universal computing ma-
chine, and went on to think about practical implemen-
tations of this theoretical computer. It was clear that
this was the crucial notion of a flexible computer that
was needed and was lacking thus far. Therefore, the
distinction between software and hardware is clear in
Turing’s work and it is a consequence of it. Turing did
not care about practical implementations at his time
because he wanted to isolate, to single out the very
notion of what a computer is, in theory. In doing so,

𝖃𝖐𝕾Ꮩ⊔⊂⊃ ∀

http://dx.doi.org/10.3989/arbor.2013.764n6006

ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

A
lan Turing and The O

rigins of Com
plexity

4

a083

he was inspired by D. Hilbert and his ideas about a
formal set of axioms from which theorems would be
provable by means of a mechanical procedure. This
led to the notion of TM and the solution of Hilbert’s
tenth problem.

As the title of his 1936 paper states, Turing wanted
to give a concrete definition of what a computable
real number is. By introducing the TM, he identified
computable numbers with those that a TM can really
compute. Thus, a real number is computable when its
decimal digits are computable by finite means.

Computable Numbers: a real number x ∈ R is a
computable real if there exists a computable function
T(k), k ∈ N such that x is bounded by rational num-
bers:

Fortunately, all algebraic numbers, as well as, π, e,
and many other transcendental numbers are compu-
table reals.

In addressing non-computable problems in Sect.III,
it is useful to introduce a variant of Turing machine
due to Chaitin (Chaitin, 1975; Chaitin, 1987).

Chaitin Machine: it is a self-delimiting or prefix-free
Turing Machine, denoted CM.

This means that the TM knows when to stop by it-
self, without needing a special mark indicator or blank
character. Formally, it is an application C: 𝖃 x 𝖃  𝖃
that is a TM acting on programs p ∈ 𝖃 and input data q
∈ 𝖃, such that both p and q are self-delimiting strings,
also called prefix-free. A set of strings 𝕾 ⊂ 𝖃 is prefix-
free if ∀s, s’ ∈ 𝕾, s is not included as a prefix in s’. For
example, the set of all bit strings up to size 2, 𝖃2 := {0,
1, 01, 10} is not prefix-free for 0 is prefix of 01. Howe-
ver, 𝕾 = {0, 10} is prefix-free.

An explicit construction of a Chaitin machine is as
follows. It has three elements: i/ a finite program
tape; ii/ a doubly-infinity work tape; iii/ a head with
one arrow scanning the program tape and another
arrow scanning the work tape. The alphabet is binary
0, 1 and the blank space is not allowed to mark the
halting of the machine. The initial state of a CM is the
program p ∈ 𝖃 stored in the program tape and with
the arrow head scanning the left-most square which
is blank. As for the work tape, it is occupied with the
input data q ∈ 𝖃 and the arrow head is scanning the
left-most bit (initial bit) of q. After the initial state, the

CM starts operating like a TM: the arrow head only
moves on the program tape to the right, while the
arrow head can move left/right on the work tape; the
arrow head can read and erase the square of the work
tape being scanned. The CM will halt if the arrow head
reaches the right-most square of the program tape, gi-
ving a certain output result C(p, q) =: x ∈ 𝖃; otherwise,
C(p, q) is not defined and does not halt. Exactly as with
ordinary Turing machines, the CM moves step by step
following a previously given finite table that completely
determines the computation for the argument (p, q).

Notice that this construction of a TM is self-delimi-
ting since the read arrow head cannot read-off the
right-most square of the finite program tape. Also, in
an ordinary TM, a program that halts is necessarily
prefix-free: it cannot be extended into another pro-
gram that halts.

Procedures exist to make a given set of bit-strings
into a self-delimiting set. For a bit-string x we cons-
truct a new bit-string by appending to it a prefix de-
pending on its length |x| =: n as follows:

For instance, from the above 𝖃2 we construct 𝖃S
2=

{010, 011, 00101, 00110} ⊂ 𝖃4, which is prefix-free.
Thus, the length increases only by an additive loga-
rithmic term in the transition from a bit-string to its
self-delimiting presentation:

asymptotically. An important property is that uni-
versal Chaitin Machines also exist: the universal CM
U starts reading a prefix-free program πc that indi-
cates which CM to simulate, followed by the binary
program for that machine, U(πcp) = C(p), with p also
prefix-free. The whole input program for U can also
be made prefix-free.

III. ... AND WHAT YOU CANNOT COMPUTE

It is a twist of fate that in the same paper where Tu-
ring shows what we can compute in a very precise and
universal way ... he also proves that there are things
that we cannot compute at all.

Gödel’s theorem on incompleteness (Gödel, 1931)
was a first shock for the foundations of Mathematics
as a complete formal logical system. The latter was
the attitude predominant before and well represen-

http://dx.doi.org/10.3989/arbor.2013.764n6006

ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

M
iguel-A

ngel M
artin-D

elgado

5

a083

ted by David Hilbert. Yet, the real impact of Gödel’s
was still under debate in the Mathematics community
and there was the impression that they were a kind of
minor anomaly that would not affect the whole buil-
ding of the theory. Turing’s non-computability results
were even more demolishing for the fundamentals of
Mathematics since he showed that a very important
example of Gödel’s results was also at the heart of
computation, algorithmic, something very practical
and with a lot of impact in the future.

It is easy to write programs, in pseudocode, that will
never halt:

will loop forever. Another less evident example of
looping program is:

It produces the cycle 1, 4, 2, 1 forever.

Thus, a skilled debugger may envisage the task of
finding all possible loops in programs and with a look-
up table, get rid of them. Or maybe, one has to study
more and it is necessary to classify families of loops
etc. Turing’s proof shows that this dream is impossible
and does not depend on how smart the debugger is. It
is at the roots of computational theory. In fact, we can
guess that the purposed debugger may easily run into
unknown territory. For instance, we can use the Co-
llatz conjecture (Collatz, 1937) to write the following
simple program:

It has been confirmed that this program stops for
very large values, n ≤ 20 x 258 (Oliveira e Silva, 2012),
but it is unknown whether it halts ∀n � N. The conjec-
ture remains unproven. A modification of it can has
been proved to be undecidable (Kurtz, Simon, 2007),
but the modification does not apply to the original
conjecture.

A basic and fundamental result of the notion of a
TM is that the set of TMs is countable, infinitely de-
numerable. It corresponds to bit-strings 𝖃. This is the

power of TMs ... and also its weakness. Although we
know that its cardinality is infinity, after Cantor we
know that not all infinities are alike. In particular, |𝖃|
is an infinity equal to the infinity of the real numbers
N. This is easily obtained by seeing a bit-string as the
binary representation of an integer number in base 2:

 n = ∑∞
n=0 xn2

n.

Cantor’s diagonal method provides a clever way
to see that there are more real numbers R than
natural numbers N (Cantor, 1891; Suppes, 1960;
Dauben, 1979).

Cantor’s Diagonal Method: it is a technique in set
theory to create a new element which is not an ele-
ment of a previously given set of elements.

As an illustration, consider the following table whe-
re we place eight bit-strings 𝕾 := {x1, x2, ... , x8} ⊂ 𝖃.
From this, we can construct another element x9 ∉ 𝕾:
select the diagonal of the table and negate each of its
bits. Then, we get x9 := 00000000 which is new.

The diagonal method is very general. It applies both
to finite sets like 𝖃, or infinite sets like 𝖃∞: the set of
infinite binary strings. A consequence of this is that
𝖃∞ has infinite cardinality but it is uncountable. To
show this, we proof it by reductio ad absurdum. Assu-
me that 𝖃∞ is countable so that we make a table like
(7) with infinite elements ordered by the integers N.
All elements are thus listed, but with the diagonal we
can create another bit-string xd:

where xi,i is the ith bit of the ith listed element of 𝖃∞.
But then, xd ∉ 𝖃∞, which is a contradiction. The as-
sumption that 𝖃∞ was a countable set is not true.

In fact, we can go on and prove that the set of real
numbers R is uncountable by establishing a bijection
between 𝖃∞ and R. Both N and R are infinite sets,
but of a different quality. The cardinality of N is de-
noted by ּ0א. R has the cardinality of the continuum.

http://dx.doi.org/10.3989/arbor.2013.764n6006

ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

A
lan Turing and The O

rigins of Com
plexity

6

a083

Continuum Hypothesis (CH): it states that the car-
dinality of R is ּ1א, the second transfinite cardinal in-
troduced by Cantor, or equivalently, that every infinite
subset of R must apply bijectively on either N or on
R itself: 2ּ1אּ = 0א.

In other words, there is no set with an intermediate
cardinality between N and R, there is a gap. CH was
introduced by Cantor but was unable to prove it (Dau-
ben, 1979). It is the first of Hilbert’s twenty-three pro-
blems proposed in 1900. Gödel proved that CH is con-
sistent with axiomatic set theory (Gödel, 1940), but
Paul J. Cohen also proved that the negation of CH is
also consistent with the axioms of set theory (Cohen,
1963). Thus, CH is undecidable or non-computable. It
is independent of standard axiomatic set theory (Zer-
melo—Fraenkel set theory).

Non-Computable Numbers: a real number non-
computable by a TM.

The set of computable reals with a TM is quite small.
Given a TM with |S| internal states, it can compute
about (4 |S| + 4)2|S| different numbers. Using Cantor’s
diagonal method, Turing was able to prove that the-
re are uncountably many noncomputable numbers.
Most of the real numbers, the continuum, is inacces-
sible to a TM.

The diagonal method has proved extremely use-
ful in fundamental problems of Mathematics. Some
instances are Russell’s paradox in set theory, Gödel’s
first theorem of incompleteness and Turing’s solu-
tion to the 10th Hilbert’s problem. Halting Problem:
There is no way to find whether a computer will
eventually halt.

A crucial assumption in Turing’s formulation of this
problem is that there is no limit for the running time
of the computer. By computer is meant a TM. Under
these circumstances, there is no mechanical procedu-
re that can decide in advance whether a computer will
ever halt. A more formal statement is the following:

Let H be the set of subsets, such that each subset
corresponds to a Turing Machines Tn , n ∈ N and all its
programs that halt when input on Tn. Each program
can also be labelled with an integer m ∈ N. Thus, the
allegedly total halting set is

In bit-string notation Tn(m) := Trn (pm , 0), i.e., input
data q = 0, the program pm ∈ 𝖃 is the bit-string of the
natural number m and similarly for the bit-string xr la-
belling TMs. Each subset of H is the halting set of a
TM Hn:

Now, we are in the situation of applying Cantor’s
diagonal method. The set H can be arranged as a table
(7), with Hn being the rows. Let us define a ‘diagonal’
set D as follows:

By construction, D is a set of natural numbers that is
different from any halting set Hn of any TM. Therefo-
re, the original goal of determining the set H of all hal-
ting machines cannot be accomplished and thus, we
can never know in general when a TM will ever halt.

Turing did not use the terminology of `halting pro-
blem’ in his 1936 paper (Turing, 1936). It seems that
the first time this was used was by Martin Davis (Da-
vis, 1965; Copeland, 2004).

After Turing found an explicit and crucial example
of a non-computable problem, it was natural to ask
whether more examples of this kind could be found.
In 1962, T. Radó (Radó, 1962) proposed another in-
teresting non-computable function (Galindo, Martin-
Delgado, 2002).

Busy Beaver Function: it is the maximum number of
digits 1s that appear as output x in a TM T that runs
over all programs p that halt on no input q = Λ:

where |x (1)| is the number of 1s in x ∈ 𝖃. There are
several variants of Busy Beaver functions that have the
same property of being non-computable and are more
manageable definitions. For instance, as the maximum
integer number that can be named with a universal TM
U with programs of a given size |p| =: N. Thus, a N-th
Busy Beaver function is denoted ∑N and defined

http://dx.doi.org/10.3989/arbor.2013.764n6006

ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

M
iguel-A

ngel M
artin-D

elgado

7

a083

This is a well-defined function ∑N : N → N, but it
is noncomputable: it grows faster than any computa-
ble function f (N), ∑N > f (N) for sufficiently large N.
Therefore, ∑N cannot be bounded in the form of ∑N =
O(f (N)). The proof goes by reductio ad adsurdum: if
it could be bounded, then the halting problem would
be computable. More examples of non-computable
functions can be obtained systematically by means of
the Algorithmic Information Theory (AIT) (Solomonoff,
1964; Kolmogorov ,1965; Chaitin, 1966).

After Turing’s halting problem, we may ask: can
we quantify non-computability on mathematical
grounds? G. Chaitin has done a great deal of work
(Chaitin, 1975; Chaitin, 1987; Chaitin, 2001; Chaitin,
2003) by approaching this issue from information-
theoretical methods. He has developed the concept
of what it known as Chaitin’s Ω number, which allows
us to address this fundamental question. Thus, we
need to introduce some basic concepts and results
from AIT.

Algorithmic Information Theory (AIT): it is a part
of Information Theory that deals with the algorithmic
complexity of functions and problems. The algorith-
mic complexity of a program p ∈ 𝖃 refers to its pro-
gram-size, i.e., bits of information regardless the run-
time that a machine like a TM takes to execute it. It is
defined as the shortest program that can reproduce a
given string x in a universal TM:

A first consequence of this definition is that H(x)
is not computable itself, for two reasons: due to the
halting problem, we never know when the programs
will halt, and because it is a minimization procedu-
re. Moreover, it is not possible to compute lower
bounds to H(x) . What is possible is to give the upper
bounds. These are good enough to gain a great deal
of insight into a given problem. For instance, we can
give an alternative definition to the Busy Beaver
function:

where the algorithmic complexity (14) is defined for
programs p that compute k = U(p) without input and
halting.

Although non-computable, algorithmic complexity
is well-defined and it has very useful properties like
subadditivity: the joint complexity is bounded by the
sum of the complexities of the individuals:

This allows us to construct big programs out of small
ones. Another crucial property follows from a proper
definition of relative entropy H(y|x)

Thus, the joint complexity of two bit-strings can be
computed knowing the absolute complexity of the
first one plus the relative complexity of the second gi-
ven the first one. The key point for this result to hold
true is the definition of relative complexity of y given
x, H(y|x*): the size in bits of the smallest self-delimi-
ting program for calculating y if we are given for free,
not x directly, but x*, a minimum-size self-delimiting
program for x.

A fundamental property of Chaitin machines is that
they allow us to define halting probabilities for TMs, or
the algorithmic probability of a bit-string, also known
as universal probability PU (x) of a given string x ∈ 𝖃:

which is the probability that a program randomly
drawn as a sequence of fair coin flips p = p1 p2 ... will
compute the string x. This is well-defined thanks to
the prefix-free property of CMs and results from
AIT (Chaitin, 1975; Chaitin, 1987; Chaitin, 2001;
Chaitin, 2003).

A central theorem relates algorithmic complexities
with algorithmic probabilities:

This relation tells us that near-minimum size pro-
grams for calculating something, elegant programs,
are essentially unique. This is a mathematical for-
mulation of Occam’s Razor. Essentially, this relation

http://dx.doi.org/10.3989/arbor.2013.764n6006

ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

A
lan Turing and The O

rigins of Com
plexity

8

a083

tells us that AIT is equivalent to Probability Theory,
although this probability has to do with randomness
in programs, rather than statistical randomness but
we shall get back to this later.

The idea behind structural or logical randomness is
lack of structure or pattern in a program or bit-string.
Thus, a program or bit-string is random if it has no
pattern or inner structure, consequently, it cannot be
compressed. The only way to address it is by printing
the whole program as it is: there is no theory behind
it from which it can be derived. By theory, we mean
a simpler procedure to recover the bit-string, i.e. so-
mething compressible. Now, we can give a precise
definition of randomness using information-theoretic
notions like algorithmic complexity. This was defen-
ded by Chaitin in AIT. It is necessary to distinguish bet-
ween finite bit-strings x ∈ 𝖃 (|x|=: n < ∞, and infinite
bit-strings x � 𝖃∞, x = (xn)

∞
n=1 (Chaitin, 2001):

i/ Random finite bit-strings:

ii/ Random infinite bit-strings:

Notice that n + H(n) is the greatest possible com-
plexity –and also the typical complexity– of a fini-
te bit-string. Equivalently, the relative complexity
H(x|n)≈n. As for infinite bit-strings, it is required that
the partial series of bit-strings xn always be as random
as possible.

It is possible to prove that the definition of random-
ness for infinite strings from AIT (21) is equivalent to
the statistical definition of random real numbers in
classical probabilistic theory, as introduced by Martin-
Löf (Martin-Löf, 1966) and Solovay (Chaitin, 2001).
This is a very remarkable result since the origin of AIT
randomness is conceptually different and related to a
lack of logical structure in a set of programs. It is very
nice that both types of definitions produce exactly the
same infinite random sequences (Li, Vitanyi, 1990; Ca-
lude, 2002; Calude, Dinneen, Shu, 2002). Moreover,
for finite bit-strings AIT also provides a definition of
randomness.

We can now define Chaitin’s Ω number and use it
to assess logical randomness in Information Theory,

the issue of non-computability. The motivation is to
define the halting probability of a TM, i.e.,

where the sum runs over prefix-free strings and the
universal computer U is a Chaitin machine. This way,
Ω can be thought of as an average on the Turing hal-
ting problem. It is possible to give a more explicit ex-
pression as follows:

It measures the probability that a randomly chosen
program p will halt when run in a universal TM U that
halts. This follows from the definition of PU (x). It is
a well-defined probability for: i/ only self-delimiting
programs are allowed; ii/ thus, the sum is convergent
due to the Kraft inequality (Cover, Thomas, 2006); iii/
0 < Ω < 1, because there are always programs that halt
and also programs that never halt. Alternatively, we
can use algorithmic complexity to define it:

What is behind Ω is a very compact way of encoding
the halting problem, or any other non-computable
problem.

The Chaitin Ω number is a real number in (0, 1)
which is logically random (21): let us truncate it up to
programs of bit-size N,

then, it is possible to prove that H(ΩN) > N - c, ∀N and
certain constant c. Ω is algorithmically random and
incompressible. These ΩN are lower bounds to the
actual Ω. This truncation also produces an unboun-
ded function ΩN that reflects its non-computability.
Knowing the first N bits of Ω, i.e., the binary expan-
sion of ΩN := 0.w1w2 ... wN then it is possible to decide
the truth of N-bit theorems. By construction, knowing
ΩN enables us to decide all programs of length |p| < N

http://dx.doi.org/10.3989/arbor.2013.764n6006

ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

M
iguel-A

ngel M
artin-D

elgado

9

a083

that halt. Now, for instance, it is possible to write a
program that searches for solution of the Collatz con-
jecture (6) and halts only if a counterexample is found.
Knowing suffi ciently long string bits of Ω enables us
to decide whether a well-defined problem, according
to a formal theory, is a theorem, a non-theorem or
independent.

After having met the limits of computability, the
natural question is: can we go beyond them? This
depends on what is called the Turing barrier (Fe-
ynman, 1982; Berstein, Vazirani, 1997; Calude, Pa-
vlolv, 2002; Kieu, 2003), that is stated as follows.
Turing Barrier: there is no way whatsoever to beat
the halting problem.

This notion has originated a line or resesearch ca-
lled Hypercomputation. It speculates that it is possi-
ble to devise theoretical or physical machines that can
compute problems that are non-computable by the
TM model (Copeland, Proudfoot, 1999).

IV. PRECURSORS OF TURING ON COMPUTABILITY

The following list by no means aims to give a full ac-
count of everyone who might have been involved di-
rectly or indirectly in research touching upon Turing’s
work, but simply to present some important facts that
are interesting in connection to his work and later
developments. Due to space constraints we cannot
dwell upon the work of such as Georg Cantor (the dia-
gonal method (Cantor, 1891), cardinalities (Dauben,
1979), David Hilbert (the axiomatic method in (Hil-
bert, 1927), Émile Borel (normal sequences in (Borel,
1909), the inaccessible number (Borel, 1952) etc. that
nevertheless will appear mentioned along the way.

A. Gottfried W. Leibniz

Leibniz made a crucial discovery that today is taken
for granted but was a major breakthrough in compu-
tational theory: the binary numeral system (base 2)
{0, 1} as a system for calculus. He went on to create
a mechanical machine that worked simple multiplica-
tion operations with this binary system. He dreamt of
human reason reduced to calculation and of powerful
mechanical engines to carry out those calculations.

Leibniz asked and thought about fundamental
questions and ideas about what is Science and Natu-
re (Chaitin, 2009). They play a central role in modern
scientific methodology. One of these questions he
asked was: is there any difference between a world
without laws of nature and a world described by laws?

How can we tell the difference? Today this looks pretty
obvious after the enormous success of the scienti-
fic method over the last three hundred years or so.
But Leibniz analysis was made in 1686 (Leibniz, 1686)
(another celebration in this year 2011) one year be-
fore the Newton’s Principia were published (Newton,
1687). The mechanistic view of the world was not at
all predominant.

In addressing those questions, Leibniz touched
upon the roots of what a physical law must be: sim-
plicity must be the key. To show this, he posed a very
concrete mathematical example. Suppose you are
given a set of points in a plane that represent the
experimental data you want to explain by a law. It is
well-known from interpolation techniques, like La
grangian interpolation, which he anticipated, that
we can always find a function that fits a given finite
number of points. How do we know then, that a phy-
sical law exists behind them? Leibniz’s answer is: only
if the rule to fit the data is simple enough. His basic
principle is Occam’s Razor. With Turing, we know how
to quantify complexity for instance by means of the
notion of compression.

Leibniz also stated that the Universe has a duality
relationship between complexity vs. simplicity. On
one side, the Universe is extremely diverse and rich,
complex. On the other hand, it can be made out of
very simple rules that we call fundamental laws. Com-
plexity out of simplicity: like in a Beethoven symphony.
In today’s computer age we have a typical example of
this phenomenon: a laptop computer can produce a
fabulous number of complicated images, movies, ga-
mes etc. Yet, all there is underneath is Leibniz’s binary
system. In this way, he anticipated the notion of emer
gent phenomena that is so influential and modern in
theoretical physics.

B. Hermann K.H. Weyl

Weyl became interested in Mathematical Lo-
gic and the foundations of Mathematics since his
thesis supervisor was David Hilbert in Gottingen.
He wrote a thorough book (Weyl, 1949) on these
topics in which he calls the attention of Leibniz’s
unpublished work (Leibniz, 1686) on the nature of
a physical law and science. Weyl discussed on the
character of mathematical cognition, the axiomatic
method and natural science.

He states that the problem of simplicity is of cen-
tral importance for the epistemology of the natural
sciences. As an example of the principle of simplici-

http://dx.doi.org/10.3989/arbor.2013.764n6006

ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

A
lan Turing and The O

rigins of Com
plexity

10

a083

ty in physics, he claims that it is a sure sign of being
on the wrong scent if one’s theory suffers the fate of
Ptolemy’s epicycles whose number had to be increa-
sed every time the accuracy of observation improved.
The three laws of Kepler were much simpler and yet
agreed noticeably better with the observations than
the most complicated system of epicycles that had
been dreamed up.

Weyl took Leibniz’s thoughts about complexity to
the extreme case and established that if we allow ar-
bitrary high complexity in a law of physics, then the
law ceases to be a law ... because then there is always
a law. Thus, some sort of balance has to be reached.

Admitting that the concept of simplicity appears to
be so inaccessible to objective formulation, he failed
to come up with a precise definition of complexity,
see Sect.VI.

C. Kurt F. Gödel

In year 1931 Gödel surprised the great mathema-
ticians of his time by showing that Hilbert’s propo-
sal of finding a complete axiomatic formalization
of Mathematics was impossible (Gödel, 1931). This
was shocking since it was as if the ultimate goal of
Mathematics, its raison d’être, could not be achie-
ved. Von Neumann was the first to realize that Gödel
was correct even before his publication by attending
a conference by Gödel in Könisberg. Subsequently,
Weyl and others had to concede as well that he was
right. Gödel was a great admirer of Leibniz and stu-
died his works thoroughly.

A common misconception about Gödel’s work is
that it is destructive towards Mathematics since it
looks like an attack on what Mathematics was un-
derstood to be: a well-defined formal system to sol-
ve problems. Quite the contrary, this objective is still
true after Gödel’s results, but has to be revised and
made precise by considering incompleteness as a key
ingredient in Mathematics. Although people think
that Gödel’s theorem was bad news, a closer analy-
sis reveals that it was good news and positive as it
allowed creativity to play a key role in the founda-
tions of Mathematics, and this can be done in a rigo-
rous way as it demands.

The heart of Gödel’s proof relies is using a self-refe-
rence proposition like

or equivalently, the liar’s paradox

to undermine the logical system of Hilbert and fo-
llowers. The latter was based on a set of axioms from
which the proof of theorems followed like a mecha-
nical checker. Whichever option you take on the sta-
tement (26), (27), true or false, you get the opposite.
Then, Gödel went on performing a series of trans-
formations into that initial paradox, some of them
involving properties of prime numbers, and making
it into definite statements in number theory. And
this was very clever and imaginative. As such, one
cannot ignore a statement in number theory which
is not provable. Hence, Godel’s results deserved to
be taken seriously.

In year 1936 Turing gave a second and definitive sur-
prise to the community of mathematicians by proving
the existence of non-computable problems, providing
an explicit example. His result can be seen as an ins-
tance of Gödel’s result, but much simpler to unders-
tand and, at the same time, it played a central role in
the theory of computation.

When time gives more perspective to Godel’s work,
it will be considered similarly to what happened with
the advent of non-Ecludian geometry in the XIX cen-
tury, or more plainly, how the discovery of irrational
numbers shocked the Pythagoreans dreams.

V. COMPUTABILITY AFTER TURING

The same applies to those who developed Turing’s
theory further as to his predecessors, and with the
same proviso on the number of figures that should be
mentioned. For instance, all the recipients of the Turing
award (Association for Computing Machinery, 2001).

A. Tibor Radó

Radó made a great contribution in the theory of
Turing Machines in his later life, in 1962, three years
before his death and after having accomplished ma-
jor contributions in other fields of Mathematics: he
solved the plateau problem, discovered essentially
unique triangulations of surfaces, and made many
other important contributions in conformal map-
pings, real analysis, calculus of variations, subhar-
monic functions, potential theory, partial differential

http://dx.doi.org/10.3989/arbor.2013.764n6006

ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

M
iguel-A

ngel M
artin-D

elgado

11

a083

equations, integration theory, differential geometry,
and topology.

He invented the Busy Beaver function (Radó, 1962),
another example of non-computable function after
Turing (15).

B. Gregory J. Chaitin

Gregory J. Chaitin, together with Ray Solomonoff
and Andrei N. Kolmogorov, are the founding fathers
of the subject called Algorithmic Complexity, Kol-
mogorov Complexity, or Algorithmic Information
Theory (AIT) (Solomonoff, 1964, Kolmogorov, 1965,
Chaitin, 1966).

Chaitin approached the two fundamental disco-
veries by Godel 1931 and Turing 1936 and his as-
sessment was that they were just the tip of the ice-
berg. Those were not isolated marginal results, but
were the natural case in Mathematics rather than
the exception. Those results implied that in some
parts of Mathematics, it was possible to have lack of
structure, of patterns, a sort of randomness intrinsic
to the theory and not because we were unable to
make it better. This randomness means logical ran-
domness, not statistical randomness though they are
related as we have seen in Sect.III. Chaitin realized
that logical randomness could be ubiquitous in Ma-
thematics and started off the development of AIT in
a form that can be considered it as the natural evolu-
tion of the work by Turing.

Gödel’s theorem can be traced back to the `liar’s
paradox’ (27) while Chaitin’s halting probability is re-
lated to the `Berry’s paradox’:

In principle, that proposition defines a certain po-
sitive integer since the set of words is finite while the
set of integers is infinite. However, as that proposition
has only ten words, it cannot be defined by that (28).
This is the paradox. A similar situation arises in the
definition of algorithmic complexity (14): if algorith-
mic complexity were computable by a TM, then simi-
lar paradoxes to (28) would appear. Berry’s paradox
was formulated by B. Russell inspired by a librarian at
Oxford whose name was G.G. Berry. Chaitin explains
that he wanted to show Gödel in 1974 how he could
prove the incompleteness theorem using Berry’s pa-
radox instead of liar’s paradox (27), but Chaitin was
not able to meet Gödel.

He introduced the Ω number: the halting probabi-
lity of a Turing machines (24). It is a natural example
of a random infinite sequence of bits. Besides provi-
ding a connection with the work of Turing, Ω makes
randomness in Mathematics more concrete and more
believable. Chaitin has shown that this logical ran-
domness is at the very heart of pure Mathematics:
provable theorems are islands surrounded by vast
oceans of unprovable truths.

C. David E. Deutsch

David Deutsch culminated the formulation of a
quantum computer in a way that it is a well-establis-
hed extension of the work by Turing into the quantum
world. R.P. Feynman gave fundamental steps prior
to him, as well as P. Benioff. A precise definition of a
quantum TM and its functioning can be found in Ga-
lindo and Martin-Delgado (Galindo, Martin-Delgado,
2002). Deutsch reformulated the Church-Turing the-
sis into a version usually called the Church-Turing-
Deutsch principle:

“Every finitely realizable physical system can be per-
fectly simulated by a universal model computing ma-
chine operating by finite means.”

This is a further extension of the Turing hypothesis
into the physical world.

Quantum versions of algorithmic complexity, Sect.
IIl, has been formulated (Vitanyi, 2000; Berthiaume,
van Dam, La-plante, 2000; Gacs, 2001; Mora, Brie-
gel, 2005; Mora, Briegel, 2004; Mora, Briegel, Kraus,
2006), as well as quantum versions of the Ω number
(Svozil, 1995; Svozil, 1995b).

VI. NOTIONS AND DEFINITIONS OF COMPLEXITY

Complexity is a word that has proliferated in a large
number of scientific disciplines: ... Most of the time,
its use is rather vague, volatile and qualitative. After
Turing, it is important to realize that a rigorous, ma-
thematical definition of complexity can be given and
made quantifiable.

A very primitive and inefficient way to assess com-
plexity in Mathematics is to define it in terms of how
long or difficult it is to write the equations of a given
theory. Naive as it may look, its use is very widespread
in the scientific community. This is not appropriate
since this notion is very dependent on the language
we use to write equations, and this may change over
the times. A proper definition of complexity calls for
something more intrinsic.

http://dx.doi.org/10.3989/arbor.2013.764n6006

ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

A
lan Turing and The O

rigins of Com
plexity

12

a083

If we want to quantify the complexity of a theory
or discipline, we must look at how it relates to the
experimental data that it wants to explain. Thus, we
consider the pair formed by a given theory and its ex-
perimental data, and map it into another pair which is
a program that produces a certain output:

This latter pair is related to a computer that takes
the program and finds the output. We can call this a
computational mapping 𝔈. With this mapping, now
we can apply complexity theory from computer scien-
ce in order to find the complexity of a certain theory
or discipline. This is an information-theoretic appro-
ach to study complexity by using Turing’s ideas in or-
der to make things more precise.

In Information Theory (IT), there are two major no-
tions of complexity: algorithmic complexity and com-
putational complexity.

Algorithmic Complexity: it cares about the pro-
gram-size complexity, i.e., bits of information regar-
dless the runtime of a computer, following the ideas
of how a TM works. We have explained it in detail in
Sect.III.

This notion of complexity has no practical applica-
tions per se. It is very useful to study the fundamen-
tals of Mathematics and its foundations.

Although algorithmic complexity is somewhat con-
ceptual, it may be also very inspiring in practical cases.
There is an example that captures the essence of this
complexity: the language used for storing image files.
There are two basic procedures: using bitmap gra-
phics or vectorial graphics. The former takes a brute
force approach, storing all the bits of a given image.
The latter is more elegant since it tries to store the for-
mula that generates a particular image. This is more
efficient and versatile since it preserves the image un-
der change of scale.

A recent new development by Chaitin is to use AIT
concepts and tools in order to give a mathematical
proof of Darwin’s theory of evolution (Chaitin, 2011;
Chaitin, 2012; Chaitin, 2012b). With quantum versions
of AIT, like new quantum Ω numbers, it is possible
to study quantum effects in the theory of evolution
(Martin-Delgado, 2011).

For more practical purposes, the notion of compu-
tational complexity is preferred. Once a problem is de-

clared computable, then we need to know if we can
compute it efficiently or we cannot. This leads to the
notion of computational complexity.

Computational Complexity: this evaluates the re-
sources needed by a computer to solve a problem and
how they scale with the typical size of the problem.
Time complexity refers to how many steps are needed
to solve a problem. Space complexity refers to how
much memory is needed to solve the problem.

Many computational tasks can be decomposed in
simpler parts called decision problems.

Decision Problem: it is a problem defined by an
algorithm stated as a question whose answer is yes
or not, equivalently, 1 or O. For instance: `Is N a pri-
me number?’, and the like. Recall that we know from
Sect.II that a Turing machine T is the formal defini-
tion of an algorithm. The TM associated to a deci-
sion problem is an application T : 𝖃 → {0,1}. Other
important problems like `search’ or `optimization’
can be decomposed into decision problems. Now,
with the notion of a TM we can define precisely time
complexity and space complexity.

Time Complexity: Given a decision problem charac-
terized by a TM T, it is the number of steps t(N) that
the TM takes before it halts and solves the problem.
N represents the size of the input. One is normally
interested in the study on the scaling of t(N) for large
N, or finding good upper bounds. Donald Knuth has
done some groundbreaking work on the analysis and
performance of algorithms (Knuth, 2000).

Space Complexity: Given a decision problem
characterized by a TM T, it is the number of squa-
res s(N) of the work tape scanned by the TM be-
fore it halts. Similar considerations apply as for
time complexity.

It is very convenient to arrange sets of problems
with the same complexity behaviour into complexity
classes.

Complexity Class: is a set of decision problems that
share the same type of time or space complexity ac-
cording to some condition that is imposed on the pro-
blem, which defines the class itself.

The most important class is the one that defines
theoretically what an efficient algorithm is. This is the
class P.

P : it is the class of decision problems that are solva-
ble in polynomial time. The time of the algorithm, or

http://dx.doi.org/10.3989/arbor.2013.764n6006

ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

M
iguel-A

ngel M
artin-D

elgado

13

a083

associated TM, is bounded as t(N) ≤ cNk, for certain c
� R, k ∈ N. The real constant c is called the overhead
of the algorithm, and it is convenient that the inte-
ger k be the lowest possible. Arithmetic operations
like adding or multiplying, or the Gauss elimination
method for solving linear equations are examples of
algorithms in P.

PSPACE : it is the class of decision problems that
are solvable in polynomial memory space. Thus, the
space of the algorithm, or associated TM, is bounded
as s(N) ≤ cNk, for certain c ∈ R, k ∈ N.

The class P is theoretically a natural choice of what
an efficient algorithm is. The reason is that it is closed
under operations that arise naturally in computation,
like sum, product or composition of polynomials that
are again polynomials. On the contrary, examples of
inefficient algorithms are packed in the class EXP.

EXP: it is the class of decision problems that takes
an exponential time to solve them, t(N) ≤ e p(N) , for
some polynomial p. For example, trial division to de-
termine whether N is a prime number is in EXP, and
many brute force algorithms.

A central problem in solving problems in computer
science is the difference between finding a solution
to a problem and verifying that a certain instance is
a solution of the problem. For instance, the decision
problem `is N a composite number?’ is very difficult
to solve for arbitrary N. However, if we are given a
solution to this problem, say M, then verifying this
instance is a matter of division and this takes poly-
nomial time. In this case, there are also polynomial
algorithms to check whether N is composite, but not
for finding its prime factors. The general case can be
casted in the form of a complexity class.

NP : is the set of decision problems whose associa-
ted TM T: 𝖃 x 𝖃  {0, 1} is in class P. T(x, y) veri-
fies whether the problem defined by the bit-string x
once an instance y is supplied. Additionally, the leng-
th of the verifier y must be polynomially bounded:
|y| ≤ p(|x|).

With the advent of quantum Turing machines, the
field of computational complexity has been revolutio-
nized and enriched. New complexity classes can be
defined substituting the classical TM by a quantum
version. For instance, the natural version of the class
P for quantum computers is called BQP, for the class
of bounded quantum polynomial problems. Scott Aa-
ronson has done systematic studies of a huge num
ber of both classical and quantum complexity classes

(Aaronson, Kuperberg, Granade, 2005). Quantum Tu-
ring machines can also be generated by sets of quan-
tum gates (Yao, 1993), what is known as the quantum
circuit model. Interestingly, it is possible to study the
quantum complexity of many statistical classical sys-
tems when simulated on a quantum computer and
still find open problems (vandenNest, Dür, Raussen-
dorf, Briegel, 2009; De las Cuevas, Dür, Van den Nest
and Martin-Delgado, 2011).

An example of complexity class relationship is P #
EXP. Another is P ⊂ NP and NP ⊂ EXP.

P vs. NP Problem : Is P ≠ NP?

This is considered the central problem in computa-
tional complexity, and in computer science in general.
Behind this question is whether computational creati-
vity can be automated or not. Thus, at first it looks like
the natural answer to this problem is yes. However,
there are neither proofs that P ≠ NP or P = NP.

There is a third way to approach this problem. No-
tice that this problem is considered as a problem in
complexity theory, not on computability. However,
this is not the case. True as it is that deciding whether
a problem is either P or NP is a complexity problem,
the P vs. NP problem is equivalent to construct a me-
chanical procedure to decide whether it is true or fal-
se, and this is a problem on computability. Therefore,
we have to face also the possibility that it is non-com-
putable. This means that it would be an irreducible
axiom that one may or may not add to his theory of
computer science and go on to produce different ty-
pes of theories, both equally valid and sensitive. Thus,
if this third-way were true, then the natural choice P ≠
NP would be like Euclidean geometry, while the non-
natural choice P = NP would be like non-Euclidean
geometry. But this is also a conjecture.

There is not accepted definition of what a complex
system is. Qualitatively, it is usually referred to a sys-
tem compressed of various parts, usually many, such
that they are intercon nected somehow up to a cer-
tain degree, and the behaviour of the whole system
cannot be anticipated from the behaviour of its indivi-
dual parts. Remarkably, this is precisely the situation
that we basically have with a TMs working with sim-
ple binary system given rise to both computable and
non-computable behaviours, Sect.II, III. Thus, when
the computational mapping (29) can be applied to a
certain system, arbitrary as it may be, we may give a
sufficient criterion for having complex behaviour by
appealing to the notion of a hard problem:

http://dx.doi.org/10.3989/arbor.2013.764n6006

ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

A
lan Turing and The O

rigins of Com
plexity

14

a083

NP Hard Problem: when some problem, not neces-
sarily in NP, can be solved by an algorithm that can be
reduced to one capable of solving any problem in NP,
then it is called NP-hard. A problem that is both NP
and NP-hard is called NP-complete.

When a problem can be solved by an algorithm that
can be reduced to one that can solve any problem in
NP, then it is called NP-hard. A problem that is both
NP and NP-hard is called NP-complete. These pro-
blems are at least as hard as the hardest problems in
NP. Examples of NP hard problems are the `subset
sum problem’ and the ̀ travelling salesman’. They both
are also NP complete. If P ≠ NP, then NP ≠ NP Hard,
otherwise, they are equal.

VII. SOME APPLICATIONS
A. A Practitioner’s Critique to Complexity Class P

The notion of an efficient algorithm is defined by
means of class P as explained in Sect.VI. There we
saw that a good theoretical definition for this class
P is that it is closed under natural operations that
occur in computations. However, theoretically well-
sounded as it may be, it runs into problems when
dealing with practical cases and real computers.
For instance, an algorithm with a time complexity
growing like t(N) ~ N100 would never attract the in-
terest of any programmer. It would be good to com-
plement that notion of theoretical efficiency with
another of `practical efficiency’.

Let us consider the following practical situation. We
are given an algorithm whose time complexity is in P
as it grows thus:

where t is now the real clock-time taken by the com-
puter to achieve the solution of a given problem who-
se size is characterized by N. The integer k is fixed by
the time complexity of the algorithm, and the cons-
tant c’ takes into account the conversion between
theoretical time-steps and real time. With the real
computer we may have been able to obtain a certain
set of points, simulation data:

up to a maximum achievable size Nmax , which will de-
pend on the technological resources available when
obtaining the data (31). It may so happen, and it is
currently the case, that the set of data is not enough
to discover a law we are searching for. This is another
version of the situation thought by Leibniz in Sect.IV.
Thus, we need a bigger value of Nmax , but we are li-
mited by the technological resources of our time, i.e.,
the time of the data (31). In order to assess how good
the time complexity (30) is, we need to compare with
the estimated improvement of the technological re-
sources. An example of this is Moore’s law for compu-
ters (Moore, 1965). Following this, we may have found
that our technology to build real computers behave as
another power law with respect to the minimum size
lmin of the computer chips that run the computations.
Thus, the smaller the size the faster the computer:

where c” is a constant and a a scaling exponent known
experimentally.

In order to discover the law, we need to increase
the maximum current size Nmax by a certain factor
f > 1, such that the set of data up to f Nmax is now
enough to determine the pattern. The question in
turn is how much we need to improve our technolo-
gy in order to achieve this. Thus, we can derive a sort
of uncertainty relation between Nmax and lmin:

with c := c”/c’ a fixed constant. The integer exponent k is
fixed by the class P of the algorithm and we want to know
how to improve Nmax depending on the relative value of α
w.r.t. k. Thus, we have Nmax = const/lmin

α/k. A possible
situation could be that k = α, then a linear decrease
in the chip technology will yield an increase in the
maximum size. A better situation is when k << α since
then the improvement will be over previous pay off.
However, the worst situation occurs when k >> α. In
the limit case of k  ∞, the maximum size would be
insensitive to any technological improvement.

Therefore, a practical criterion for the class P is to
compare the integer k with the technological scaling
exponent α, i.e. k vs. α, rather than the more theoreti-
cal criterion of comparing k vs. ∞.

http://dx.doi.org/10.3989/arbor.2013.764n6006

ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

M
iguel-A

ngel M
artin-D

elgado

15

a083

Another important practical case we may face is
the existence of technological barriers. For example,
today computer technology has reached the nanome-
tre scale. Suppose we have a certain set of data like
(31) obtained with a class P algorithm, but we need
to increase the maximum size by a factor f > 1 such
that then we need to go down well beyond the size of
angstroms. Then, for those smaller sizes, the compu-
ter leaves the classical behaviour and enter the realm
of quantum mechanics, so that we may well need a
quantum computer to expand the range of data and
be able to find our law.

B. On the Halting Problem in Chess

The halting problem has many implications as we
have shown. It is a concept of practical use in games,
particularly in advanced games like chess. There, it
is important to make sure that the rules of the game
(axioms) will ensure that the match will terminate.
Until 1929, players were not aware that the set of
rules already known made it possible to produce ne-
ver-ending chess matches. In that year, Max Euwe, a
mathematician later to become the fifth world chess
champion of modern history 1935-37, settled the
question by rediscovering the Thue-Marston (Thue,
1906) sequence and its cube-free property.

In binary language, the Thue-Marston sequence is
defined by the following generating moves:

For instance, the first elements of the sequence are

An element of a sequence is cube-free if it contains
no subsequence of the form ppp, where p is a finite
non-empty element.

A chess match is divided in three parts: opening,
middle-game and end-game. The end-game is cha-
racterized by the presence of very few pieces on the
board compared to the opening. Thus, a theory of the
end-game in chess is highly developed as its complexi-
ty is reduced. It had been known that repetition of

movements, a loop, may happen in certain situations.
Rules were established to declare a draw when rep
etition of moves become endless. Euwe (Euwe, 1929)
used the cubic-free property of the Thue-Marston se-
quence to show how to circumvent those rules. Thus,
new rules had to be added to the game. This is ano-
ther instance of how axioms, i.e. rules, may be chan-
ged a posteriori depending on the type of theory we
want to have.

When Bobby Fischer was an active chess player,
he would say “Gods put the middle game after the
opening”, meaning that the complexity of the middle
game was so high that it was unknown territory, whe-
re written manuals for openings were useless, and he
would feel at his best. After retirement, in the 1980’s
Fischer sent a warning call saying that chess was be
coming too technical, mechanical and with little room
for creativity. He proposed to change the rules of the
opening somehow, interestingly enough, introducing
some randomness in chess. In particular, by randomi-
zing the starting position of the main pieces in the first
row of each player side. And this happened way befo-
re a computer, Deep Blue, defeated the World Chess
Champion G. Kasparov in 1997. Many people thought
this to be unbelievable before year 2000. This does
not mean that computers are more intelligent than
us, or intelligent at all. It means that their brute force
of calculation is stronger than ours at playing chess.

C. Divertimento: On the Complexity of Music

Mozart composed many divertimentos, a musical
form very common in the Classical era prior to the
success of the sonata form by Haydn. We may produ-
ce a divertimento playing with Turing’s ideas in music.

Music is more than a language, but insofar as it is a
language, we can apply Turing’s results to it and pro-
ve some amusing results which may surprise music
theorists, particularly given that they can be proved
mathematically.

i/ There is an endless number of different musical
compositions.

ii/ There are musical compositions that cannot be
composed.

Statement i/ implies that musical creativity is infini-
te, for sure, while ii/ means that, nevertheless, it also
has some limits.

To proof i/ we use a code such that the music sym-
bols and rules of composition are encoded with a gi-
ven alphabet Α. This can be binary for instance. Then,

http://dx.doi.org/10.3989/arbor.2013.764n6006

ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

A
lan Turing and The O

rigins of Com
plexity

16

a083

we use the same code alphabet to label all known
compositions. This can be done by lexicographic or-
der, forming a table like (7). Now, applying the dia-
gonal method we obtain another composition which
is certain to be new. Though it is unlikely that these
mathematical type of compositions would have plea-
sed Mozart and Haydn, it may produce a different
reaction in B. Bartók, A. Schongberg, J. Cage, G. Lige-
ti, K. Stockhausen, I. Xenakis, P. Boulez, C. Halffter...
Nevertheless, what is remarkable, and unimaginable
before Turing, is that a computer could be of help as
a composition machine as they are used nowadays.

To prove ii/ we need to realize that each music com-
position is like a TM. Thus, it may or may not halt.
For instance, we can produce simple scores that re-
peat themselves forever. Accepting this proviso about
endless compositions is essential. Suppose now that
we want to write a music composition that with our
language would be equivalent to a program that finds
when any other musical composition will ever halt.
Then, that score is impossible to be written.

Cellular automata are used to produce musical sco-
res (Wolfram, 2002; Millen, 1990; Bozkurt, 2011), and
some them are equivalent to a universal Turing machi-
ne, like the Rule 110 cellular automaton (Cook, 2004).

In the early 20th century, Arnold Schongberg evalu
ated the situation of classical music and judged that
the tonal system based on major and minor scales,
Greek modes etc. was absolutely worn out. Subjective
as this may be, he went on to search for new compo-
sition systems by relaxing the rigidities of the old sys-
tem. For instance, allowing all tones in a dodecapho-
nic scale to play the same role, without dominant or
tonic tones. This produce non-tonal systems like the
twelve-tone method and many others to follow, even
by introducing random methods and other tools from
Mathematics, like set theory. Again, that situation
arose because creativity was judged to be exhausted,
and a change or extension of axioms was proposed
instead, leading to controversy. Nevertheless, contro-
versy is unavoidable here since music is more than a
language and personal taste plays a major role.

VIII. CONCLUSIONS

Turing revolutionized the fundamental roots of
what we understand by scientific knowledge, and he
will continue to do so as many new applications of his
works arise. At the same time, his scientific work still
lacks the recognition that it deserves in his own field
of Mathematics. As he also founded modern compu-

ter science, recognition came first mainly from Engi-
neering and Physics.

The part of Turing’s 1936 paper (Turing, 1936) de-
voted to computable numbers has given rise to the
development of computer technology as a whole.
This is having a gigantic impact on our culture. The
other part of Turing’s paper devoted to the solution
of Hilbert’s tenth problem, as a consequence of the
previous one, has helped us to deepen our knowledge
about scientific knowledge itself. This is best exempli-
fied by the work of Chaitin, who has formalized what
is knowable and unknowable based on Turing’s work,
and extending Godel’s results in a more systematic
and accessible way. His conclusion is somewhat shoc-
king as it implies that logical randomness is common
even in Mathematics.

There is a parallelism between intrinsic randomness
in Mathematics and in Physics, and we can learn from
it. In Physics it appeared in the 1920’s in Quantum
Mechanics, and also produced a shocking revolution
that removed the holy grail of classical Physics, deter-
minism, from the central status it had been enjoying.
Nowadays, Quantum Mechanics is a successful theory
and has been accepted both logically and empirically,
due to unprecedentedly accurate experimental re-
sults. In Mathematics, logical randomness appeared
in 1930’s and is also becoming accepted.

After the work of Gödel, Turing and Chaitin it is cer-
tain that a TOE of Mathematics is impossible. But,
what about Physics? Inasmuch as Physics inherits the
language of Mathematics to express its laws and work
out its consequences, we may immediately deduce
that the same applies to Physics and there is no TOE
for it. However, Physics is more than a language and
the ultimate word relies on experience, on the natural
law. Our physical knowledge is like a window on an
energy scale, ranging from some point in the infrared
to some point in the ultraviolet, i.e., large distance
scales to small distance scales. From this finite win-
dow scale we may bet on two possibilities: i/ that no
TOE of Physics exists, since as we enlarge the energy
window we will get new laws of Physics that were not
anticipated; ii/ that a TOE of Physics do exists and
from our current window of knowledge, or proba-
bly a better one, we can deduce the whole range of
physical laws in the entire energy scale, i.e., Physics
would be finite and closed as a source of knowledge.
Following Turing’s work, I believe that option i/ is the
correct one, and experience will tell us. The non-exis-
tence of a TOE in Physics is good news for creativity
in contrast to reductionism.

http://dx.doi.org/10.3989/arbor.2013.764n6006

ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

M
iguel-A

ngel M
artin-D

elgado

17

a083

Is it true that true randomness is only quantum?
The Ω number is a real number whose binary expan-
sion yields bits of information that are true for no rea-
son, they have no structure or pattern, it is incompres-
sible and its bits totally random as Chaitin has shown.

The following question may help to face this outco-
me situation not so dramatically. How can it be that
Natural Sciences like Physics, Mathematics, etc have
become so successful if we live in a world plagued by
intrinsic randomness? A clue to this question is to take
the example of what type of real numbers are emplo-
yed in successful theories. We will see that we always
have real numbers like √2, π, e, etc. Although they
are irrational with an infinite number of decimals,
we have very short algorithms that generate that se-
ries of decimals very effi ciently. I.e., they are actually
maximally compressible numbers.

This fact can be extrapolated to the whole structure
of successful theories of Nature: they are very sim-
ple, they can be compressed, reduced to a simple set
of axioms or laws of Nature. The rest of the univer-

se that remains unknown is due in part because it is
not compressible and we live in a small region of the
whole space of theories or knowledge. We may divide
our ‘sphere of knowledge’ into three parts: i/ current
science (known); ii/ future science (to be known); and
iii/ unknowable or irreducible.

Physicists are willing to find and adopt new physi-
cal principles, laws that expand their knowledge of
the universe. Mathematicians, standard and formal
ones, tend to stick rigidly to axioms and not to modify
them. They should adopt a more experimental attitu-
de. With Turing, the fields of Mathematics and Physics
become more unified.

Acknowledgments

M.A.M.-D. thanks the Spanish MICINN grant
F15200910061, CAM research consortium QUITEMAD
52009-ESP1594, European Commission PICC: FP7
2007-2013, Grant No. 249958, UCM-BS grant GICC-
910758.

REFERENCES

Aaronson, S.; Kuperberg, G. and Grana-
de, C. (2005). “The Complexity Zoo”,
retrieved from https://complexityzoo.
uwaterloo.ca/ComplexityZoo

Association for Computing Machinery
(2001). Retrieved from http://awards.
acm.org/

Bernstein, E. and Vazirani, U. (1997).
"Quantum complexity theory". SIAM J.
Comput., 26, pp. 1411-1473.

Berthiaume, A; van Dam, W. and Laplante,
S. (2000). "Quantum Kolmogorov Com-
plexity”, arXiv: retrieved from quant-
ph/005018.

Borel, E. (1909). “Les probabilités dénom-
brables et leurs applications arithmé-
tiques”. Rendiconti del Circolo Matem
atico di Palermo, 27, pp. 247-271.

Borel, E. (1952). Les nombres inaccessi-
bles. Paris: Ed. Gauthier-Villars, 10 +
141 pp.

Bozkurt, B. (2011). Otomata - Online Ge-
nerative Musical Sequencer. Retrieved
from http://www.earslap.com/pro-
jectslab/otomata

Chaitin, G. J. (1966). “On the length of pro-
grams for computing finite binary se-
quences”. Journal of the ACM, 13, pp.
547-569.

Chaitin, G. J. (1975). “A theory of program
size formally identical to information
theory”. J. ACM, 22, pp. 329-340.

Chaitin, G. J. (1987). Algorithmic Information
Theory. Cambridge University Press.

Chaitin, G. J. (2001). Exploring randomness.
London: Springer-Verlag.

Chaitin, G. J. (2003). The Limits of Mathe-
matics. London: Springer-Verlag.

Chaitin, G. J. (2009). “Leibniz, Complexity and
Incompleteness”. APA Newsletter on Phi-
losophy and Computers, 9 (1), pp. 7-10.

Chaitin, G. J. (2011). “To a mathematical
theory of evolution and biological crea-
tivity”; preprint. Paper presented Mon-
day 10 January 2011 at a workshop on
“Randomness, Structure and Causality:
Measures of Complexity from Theory
to Applications” organized by Jim Crut-
cheld and Jon Machta at the Santa Fe
Institute in New Mexico.

Chaitin, G. J. (2012). Proving Darwin. New
York: Pantheon.

Chaitin, G. J. (2012b). "Life as evolving soft-
ware". In H. Zenil, A Computable Univer-
se. Singapore: World Scientific.

Calude, C. S. (2002). Information and Ran-
domness. An Algorithmic Perspective.
Second Edition. Berlin, Heidelberg, New
York: Springer-Verlag.

Calude, C. S.; Dinneen, M. J. and Shu, C.-K.
(2002). “Computing a glimpse of ran-
domness”. Exper. Math., 11, pp. 361-370.

Calude, C. S. and Pavlov, B. (2002). “Coins,
Quantum Measurements, and Turing’s
Barrier”. Quantum Information Proces-
sing, 1 (1-2).

Cover, T. M. and Thomas, J. A. (2006). Elements
of Information Theory. Second Edition.
New Jersey: John Wiley & Sons, Inc.

Cantor, G. (1891). See (Suppes, 1960).

Cohen, P. J. (1963). “The Independence of
the Continuum Hypothesis”. Procee-
dings of the National Academy of Sci
ences of the United States of America,
50 (6), pp. 1143-1148.

http://dx.doi.org/10.3989/arbor.2013.764n6006
https://complexityzoo.uwaterloo.ca/ComplexityZoo
https://complexityzoo.uwaterloo.ca/ComplexityZoo
http://www.earslap.com/projectslab/otomata
http://www.earslap.com/projectslab/otomata

ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

A
lan Turing and The O

rigins of Com
plexity

18

a083

Collatz, L. (1937). Unpublished.

Cook, M. (2004). “Universality in Elemen-
tary Cellular Automata”. Complex Sys-
tems, 15, pp. 1-40.

Copeland, J. and Proudfoot, D. (1999). “Alan
Turing’s forgotten ideas in computer
science”. Scientific American, April issue.

Copeland, J. (ed.) (2004). The Essential Tu-
ring: Seminal Writings in Computing,
Logic, Philosophy, Artificial Intelligence,
and Artificial Life plus The Secrets of
Enigma. Oxford UK: Clarendon Press
(Oxford University Press).

Dauben, J. W. (1979). Georg Cantor: his ma-
thematics and philosophy of the infinite.
Boston: Harvard University Press.

Davis, M. (1958). Computability and Unsol-
vability. New York: McGraw-Hill.

De las Cuevas, G.; Dür, W.; Van den Nest,
M. and Martin-Delgado, M. A. (2011).
“Quantum algorithms for classical latti-
ce models”, arXiv:1104.2517. New J. of
Physics 13:093021.

Euwe, M. (1929). “Mengentheoretische
Betrachtungen über das Schachspiel”.
Proc. Konin. Akad. Wetenschappen
(Amsterdam), 32 (5), pp. 633-642.

Feynman, R. P. (1982). “Simulating physics
with computers”. Int. J. Theor. Phys., 21,
pp. 467-488.

Gács, P. (2000). "Quantum Algorithmic
Entropy”, (2001). arXiv: retrieved from
quantph/0011046 v2.

Galindo, A. and Martin-Delgado, M. A.
(2002). “Information and Computa-
tion: Classical and Quantum Aspects".
Rev.Mod.Phys., 74, pp. 347-423;
arXiv:quant-ph/0112105.

Gödel, K. F. (1931). “Fiber formal unents-
cheidbare Sátze der Principia Mathe-
matica and verwandter Systeme, I".
Monatshefte für Mathematik and Phy-
sik, 38, pp. 173-98.

Gödel, K. F. (1940). The Consistency of the
Axiom of Choice and of the Generalized
Continuum Hypothesis with the Axioms
of Set Theory. Princeton University Press.

Hilbert, D. (1927). “The foundations of
mathematics”, translated by Stephan
Bauer-Menglerberg and Dagfinn Folles-
dal (pp. 464-479). In: van Heijenoort, J.
(1967, 3rd printing 1976), From Frege to
Godel: A Source Book in Mathematical
Logic. Cambridge, MA: Harvard Univer-
sity Press, pp. 1879-1931.

Kieu, T. D. (2003). “Quantum Algorithm for
Hilbert’s Tenth Problem”, retrieved from
arXiv:quant-ph/0310052v2.

Knuth, D. E. (2000). Selected Papers on
Analysis of Algorithms. Ed. Stanford,
California: Center for the Study of Lan-
guage and Information - CSLI Lecture
Notes, no. 102.

Kolmogorov, A. N. (1965). “Three Appro-
aches to the Quantitative Definition of
Information”. Problems Inform. Trans
mission, 1 (1), pp. 1-7.

Kurtz, S. A. and Simon, J. (2007). “The Un-
decidability of the Generalized Collatz
Problem”. In Cai, J.-Y.; Cooper, S.B.; Zhu,
H., Proceedings of the 4th International
Conference on Theory and Applications
of Models of Computation, TAMC 2007,
held in Shanghai, China in May 2007.
pp. 542-553.

Leibniz, G. W. (1686). Discours de métaphy-
sique.

Li, M. and Vitanyi, P. (1990). “Kolmogorov
complexity and its applications”. In: J.
van Leeuven (ed.), Handbook of Theo-
retical Computer Science, Vol. A, pp.
187-254.

Martin-Delgado, M. A. (2011). “On Quan-
tum Effects in a Theory of Biological Evo-
lution”. Scientific Reports, 2, 302 (2012).
Retrieved from arxive arXiv:1109.0383.

Martin-Löf, P. (1966). “The Definition of
Random Sequences.” Information and
Control, 9 (6), pp. 602-619.

Millen, D. (1990). "Cellular Automata Mu-
sic". In International Computer Music
Conference, Glasgow. Retrieved from
http://comp.uark.edu/dmillen/cam.html

Minsky, M. L., (1962). “Size and Structure
of Universal Turing Machines Using Tag
Systems”. Proc. Sympos. Pure Math. 5,
pp. 229-238.

Moore, G. E. (1965). “Cramming more com-
ponents onto integrated circuits”. Elec-
tronics, 38 (8), April 19.

Mora, C. and Briegel, H. J. (2004). “Algori-
thmic complexity of quantum states”,
retrieved from arXiv:quantph/0412172.

Mora, C. and Briegel, H. (2005). “Algorithmic
complexity and entanglement of quan-
tum states”. Phys. Rev. Lett., 95 (20).

Mora, C.; Briegel, H. and Kraus, B. (2006).
“Quantum Kolmogorov complexity and
its applications”, retrieved from arXiv:
quant-ph/0610109.

Newton,	 I. (1687). Philosophiae Na-
turalis Principia Mathematica. Lon-
don Online version: http://www.
ntnu.no/ub/spesialsamlingene/ebok/
02a019654.html.

Oliveira e Silva, T. (2012). Retrieved from
http://www.ieeta.pt/ tos/3x+1.html

Radó, T. (1962). “On non-computable
functions”. Bell System Technical Jour-
nal, 41 (3), pp. 877-884.

Rogozhin, Y. (1996). “Small Universal Turing
Machines”. Theoret. Comput. Sci., 168,
pp. 215-240.

Shannon, C. E. (1956). “A Universal Turing
Machine with Two Internal States”. In
Automata Studies. Princeton, NJ: Prin-
ceton University Press, pp. 157-165.

Solomonoff, R. (1964). “A Formal Theory of
Inductive Inference Part I”. Information
and Control, 7 (1), pp. 1-22.

Suppes, P. (1972, 1960). Axiomatic Set
Theory. New York: Dover.

Svozil, K. (1995). “Quantum algorithmic
information theory”, eprint arXiv:quant-
ph/9510005

Svozil, K. (1995b). “Halting probability am-
plitude of quantum computers”. Journal
of Universal Computer Science, 1 (3).

Turing, A. M. (1936). “On computable
numbers, with an application to the
Entscheidungsproblem”. Proc. London
Math. Soc. { [2] } 42 (1936-37), 230-265;
Correction, ibid., 43 (1937), 544-546.
Online open access http://www.abe-
lard.org/turpap2/tp2-ie.asp.

Turing, A. M. (1946). “Proposed Electronic
Calculator” (ACE), National Physical La-
boratory internal document (1946). The
original copy is in the (British) National
Archives, in the file DSIR 10/385. first
published as the NPL report, Com. Sci.
57 (1972), with a foreword by Donald
W. Davies.

Thue, A. (1906). “Fiber unendliche Zeichen-
reihen”. Norske vid. Selsk. Skr. Mat. Nat.
Kl., 7, pp. 1-22. Reprinted in Selected
Mathematical Papers of Axel Thue (Ed.
T. Nagell). Oslo: Universitetsforlaget,
pp. 139-158, 1977. M. Morse, “Recur
rent Geodesics on a Surface of Negative
Curvature.” Trans. Amer. Math. Soc. 22,
84-100, (1921).

Van den Nest, M.; Dür, W.; Raussendorf, R.
and Briegel, H. J. (2009). “Quantum al-
gorithms for spin models and simulable
gate sets for quantum computation”.
Phys. Rev. A, 80, 052334.

Vitanyi, P. (2000). “Three Approaches to
the Quantitative Definition of Infor-
mation in an Individual Pure Quantum
State”, arXiv: retrieved from quant-
ph/9907035.

http://dx.doi.org/10.3989/arbor.2013.764n6006
http://www.ntnu.no/ub/spesialsamlingene/ebok/
http://www.ntnu.no/ub/spesialsamlingene/ebok/
http://www.abelard.org/turpap2/tp2-ie.asp.
http://www.abelard.org/turpap2/tp2-ie.asp.

ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

M
iguel-A

ngel M
artin-D

elgado

19

a083

Weyl, H. (1927). Philosophy of Mathematics
and Natural Science, translated by Olaf
Helmer with a new introduction by Franck
Wilczek. Princeton University Press, New
Jersey (1949). Parts of this book were ori-
ginally published by R. Oldenbourg in Ger-

man in 1927 in Handbuch der Philosophie
under the title “Philosophie der Mathe-
matik and Naturwissenschaft".

Wolfram, S. (2002). Wolfram Tones. Retrie-
ved from http://tones.wolfram.com/

Yao, A. (1993). Proceedings of the 34th IEEE
Symposium on the Foundations of Com-
puter Science (IEEE Computer Society,
Los Alamitos, CA), p. 352.

http://dx.doi.org/10.3989/arbor.2013.764n6006

