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RESUMEN: El 75 aniversario del artículo seminal de Turing 
y el centenario de su nacimiento ocurren en 2011 y 2012, 
respectivamente. Es natural revisar y valorar las contribuciones 
que hizo Turing en campos muy diversos a la luz de los desarrollos 
que sus pensamientos han producido en muchas comunidades 
científicas. Aquí, la idea principal es discutir como el trabajo de 
Turing nos permite cambiar nuestra visión sobre los fundamentos 
de las Matemáticas, de forma similar a como la mecánica 
cuántica cambió nuestra concepción de la Física. Nociones 
básicas como compatibilidad y universalidad se discuten en un 
contexto amplio, haciendo énfasis especial en como a la noción 
de complejidad se le puede dar un significado preciso después de 
Turing, es decir, no solo cualitativo sino cuantitativo. Al trabajo de 
Turing se le da una perspectiva histórica en relación a algunos de 
sus precursores, contemporáneos y matemáticos que tomaron y 
llevaron sus ideas aún más allá.
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ABSTRACT: The 75th anniversary of Turing’s seminal paper and 
his centennial anniversary occur in 2011 and 2012, respectively. 
It is natural to review and assess Turing’s contributions in 
diverse fields in the light of new developments that his 
thought has triggered in many scientific communities. Here, 
the main idea is to discuss how the work of Turing allows us to 
change our views on the foundations of Mathematics, much 
as quantum mechanics changed our conception of the world 
of Physics. Basic notions like computability and universality 
are discussed in a broad context, placing special emphasis on 
how the notion of complexity can be given a precise meaning 
after Turing, i.e., not just qualitatively but also quantitatively 
Turing’s work is given some historical perspective with respect 
to some of his precursors, contemporaries and mathematicians 
who took his ideas further.
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I. INTRODUCTION

At the year of this writing, 2011, it is 75 years since 
the seminal paper by Alan Mathison Turing (Turing, 
1936) was published. And 2012 will mark the cente-
nary of his birth. This looks like a good occasion to 
review and assess his work and impact and to See 
how useful and vital it has become in so many aspects 
and disciplines. As time goes by, the importance and 
relevance of Turing’s seminal paper rises. Turing tran-
scends Mathematics and goes into other disciplines 
like Physics, Engineering, etc. His work started as an 
in-depth study of the very notion of what an algo-
rithm is, discarding what was irrelevant and targeting 
the essence of a mechanical procedure with a new 
notion of a theoretical machine. This very simple ma-
chine, the Turing machine, however turns out to be 
extremely powerful and even universal. In this regard, 
Turing’s work parallels Einstein’s on special relativity, 
when Einstein went to make precise and explicit defi-
nitions of elementary concepts like distances, time in-
tervals, clock synchronization and the definition of an 
inertial frame. Despite their simplicity, however the 
consequences of Einstein’s principles revolutionized 
the whole of Physics. Turing’s work is of a similar kind.

Turing made a gigantic effort to understand how the 
human mind works at the level of finding mechanical 
procedures to compute things and devise appropri-
ate definitions of what algorithms are (Turing, 1936). 
His work represents a great deal of imagination and 
creativity, which in turn has changed the notion of 
creativity ever since, for creativity now can be made 
quantitative using Turing’s work.

He invented the theory of computability. What is 
more important, this affects the way Mathematics 
must be understood at a fundamental level, the calcu-
lus. And he did more. His results have revolutionized 
the way we address axioms, i.e., the very fundamen-
tals of Mathematical disciplines. He addressed ques-
tions such as when a set of axioms is complete, what 
to do when it is not. Ultimately, this leads to the very 
notion of mathematical creativity.

Turing has achieved considerable recognition in 
Engineering Schools, such as Computer Science and 
many others. However, it is rather disappointing to 
see that the figure of Turing and his work still does not 
have a central, pivotal role in the curricula of univer
sity mathematics departments, a fact which merits a 
word or two. Firstly, Turing’s theory can be regarded 
as the fundamental to what a calculation should be in 
Mathematics. It underlines all previous knowledge on 

calculus and analysis in Mathematics in a way that was 
implicit before Turing. After Turing, it is systematized 
in a way that it becomes mechanical and algorithmic: 
the holy grail of any theory. Secondly, it affects the 
way axioms have to be considered in Mathematics. 
The big surprise is that Mathematics is not closed in 
the sense predicted by David Hilbert, but it is an open 
system capable of increasing its amount of knowledge 
by adding new axioms to a discipline.

And the same goes for university physics depart-
ments, where the computer science part of in the cur-
ricula is mostly reduced to learning manuals of soft-
ware instead of the fundamentals of computation. 
Manuals are changeable, version after version, but 
Turing’s foundations on computability theory remain.

Turing’s work has led to the development of 3 major 
disciplines:

Computability: it studies which problems can be 
computed and which cannot be computed. This goes 
to the very limits of what is knowable.

Complexity: once a problem is computable or solva-
ble, then we need to know how difficult is to compute 
it. This can be quantified in various ways giving rise to 
different notions of complexity: algorithmic complex-
ity, computational complexity and others that will be 
considered in Sect. III, VI.

Universality: the new paradigm is to use a TM, the 
basis of a real computer, in order to solve problems. 
Then, we need to know how general these machines,  
Turing machines, can be. Does every problem or re-
duced set of them require a particular TM? This is 
another fundamental discovery, the notion of a Uni-
versal Turing Machine (UTM): a machine that can 
simulate the functioning of any other TM. Here it is 
important to study how many resources we need to 
create such a UTM.

These disciplines are part of computer science as 
envisaged by Turing and extend to many branches of 
science like Physics, Mathematics, Engineering, etc. 
This extension will increase with our better under-
standing of Nature and will apply to more descriptive 
sciences like Biology.

From Turing’s work it is apparent that with a finite 
set of axioms it is not possible to cover Mathematics 
as a whole. There are irreducible truths, axioms that 
are not self-evident in the sense of Euclid or Hilbert, 
and must be added to as independent axioms. This 
makes a TOE (Theory of Everything) of Mathematics 
impossible.
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II. WHAT YOU CAN COMPUTE...

Turing was the first to separate software from 
hardware in a very concrete way. He did that by first 
focusing on the theoretical problem of having a well-
defined notion of a computing machine. In his later 
years, he also got involved in constructing computing 
machine in practice (Turing, 1946).

Turing first goal was to scrutinize all steps that a 
person realizes during a calculation, like arithmetic, 
and separate irrelevant aspects from the relevant 
properties necessary to carry out the calculation. 
In doing so, he realized that there were two main 
ingredients: ‘local information’ and ‘state of mind’. 
Local information means that at each calculation 
step, only a small part of the whole operation is 
being performed. State of mind means that the steps 
after a local calculation is carried out, depend on the 
rules stored in the person’s mind which defines the 
calculation itself. Turing realized that it was enough to 
use a one-dimensional roll of paper or pad to write 
the intermediate (local) calculations and that the rules 
of the state of mind could be also stored in a table of 
operations. After this analysis, Turing came up with an 
abstract construct of his machine.

Turing Machine: it is a finite-state machine with 
3 components: i/ a doubly-infinite one-dimensional 
tape where symbols from an alphabet were written 
or read from square cells; ii/ a control unit that stores 
the set of instructions in a table of specific operations; 
iii/ a head that scans one cell of the tape at a time 
and reads or writes alphabet symbols onto the tape 
depending on the instructions in the control unit. 
A more formal mathematical definition with the 
concrete functioning, examples and diagrams can be 
found in (Galindo, Martin-Delgado, 2002).

He was so convinced that this definition of machine 
represented the most general possible algorithm for 
calculus that he formulated the basic principle of 
computation by means of his construction:

Turing Hypothesis: (also known as the Church-
Turing thesis):

“A function is computable, if and only if, it can be 
computed by a Turing machine.”

Turing named his machine ̀ a-machine’ for automatic 
machine (Turing, 1936). In essence, this statement is 
more than a mathematical axiom, it is part of Physics 
as it is a principle that tells us what we can compute 
in our Universe.

A basic and fundamental result of the notion of a 
TM is that the set of TMs is countable, infinitely de
numerable. It corresponds to bit-strings. Let 𝖃 := {Λ, 0, 
1, 00, 01,10,11, 000, ...} be the set of finite strings of 
binary bits, with Λ denoting the blank space symbol. 
The size or number of bits is |x|. The set of infinite bit-
strings is denoted as 𝖃∞. A Turing Machine TM is an 
application T: 𝖃 x 𝖃  𝖃 that takes an input data q ∈ 
𝖃 and a program p ∈ 𝖃 that acts on the input to produ-
ce an output string T(p, q) = x ∈ 𝖃 which is the result 
of the computation, assuming it halts. When the in-
put data is empty, we simply write T(p) = x, and when 
the output is simply stopping the computer with no 
output, we write T(p) : halts.

However, the notion of a TM is tight to the compu-
tation of a given function or problem. Changing the 
function means changing the TM. Here comes the no-
tion of universality as a property of a special TM that 
can compute what any other TM can do.

Universal Turing Machine: denoted as UTM, it is a 
construction based on set of instructions and states 
in the control unit of a TM such that it can reproduce 
the functioning of any other TM.

It is very remarkable that the definition of a TM 
allows for this property of universality. The basic idea 
behind the UTM is the observation that a TM T can be 
described by a bit-string itself and supplied to another 
TM T* along with input data q ∈ 𝖃. Thus, T* (T, q) will 
produce the same result as T(q), thereby T* simulating 
the functioning of any TM T.

In doing so, Turing was giving birth to program-
ming and compiling. A universal TM is the notion of 
a general-purpose programmable computer today. 
After Turing gave the first construction of a UTM (Tu-
ring, 1936), other constructions have been presen-
ted depending on the number of states used by the 
machine and the number of symbols in the alphabet 
(Shannon, 1956; Minsky, 1962), including small ones 
(Rogozhin, 1996).

Von Neumann realized that Turing had achieved the 
goal of defining the notion of universal computing ma-
chine, and went on to think about practical implemen-
tations of this theoretical computer. It was clear that 
this was the crucial notion of a flexible computer that 
was needed and was lacking thus far. Therefore, the 
distinction between software and hardware is clear in 
Turing’s work and it is a consequence of it. Turing did 
not care about practical implementations at his time 
because he wanted to isolate, to single out the very 
notion of what a computer is, in theory. In doing so, 

𝖃𝖐𝕾Ꮩ⊔⊂⊃ ∀
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he was inspired by D. Hilbert and his ideas about a 
formal set of axioms from which theorems would be 
provable by means of a mechanical procedure. This 
led to the notion of TM and the solution of Hilbert’s 
tenth problem.

As the title of his 1936 paper states, Turing wanted 
to give a concrete definition of what a computable 
real number is. By introducing the TM, he identified 
computable numbers with those that a TM can really 
compute. Thus, a real number is computable when its 
decimal digits are computable by finite means.

Computable Numbers: a real number x ∈ R is a 
computable real if there exists a computable function 
T(k), k ∈ N such that x is bounded by rational num-
bers:

Fortunately, all algebraic numbers, as well as, π, e, 
and many other transcendental numbers are compu-
table reals.

In addressing non-computable problems in Sect.III, 
it is useful to introduce a variant of Turing machine 
due to Chaitin (Chaitin, 1975; Chaitin, 1987).

Chaitin Machine: it is a self-delimiting or prefix-free 
Turing Machine, denoted CM.

This means that the TM knows when to stop by it-
self, without needing a special mark indicator or blank 
character. Formally, it is an application C: 𝖃 x 𝖃  𝖃 
that is a TM acting on programs p ∈ 𝖃 and input data q 
∈ 𝖃, such that both p and q are self-delimiting strings, 
also called prefix-free. A set of strings 𝕾 ⊂ 𝖃 is prefix-
free if ∀s, s’ ∈ 𝕾, s is not included as a prefix in s’. For 
example, the set of all bit strings up to size 2, 𝖃2 := {0, 
1, 01, 10} is not prefix-free for 0 is prefix of 01. Howe-
ver, 𝕾 = {0, 10} is prefix-free.

An explicit construction of a Chaitin machine is as 
follows. It has three elements: i/ a finite program 
tape; ii/ a doubly-infinity work tape; iii/ a head with 
one arrow scanning the program tape and another 
arrow scanning the work tape. The alphabet is binary 
0, 1 and the blank space is not allowed to mark the 
halting of the machine. The initial state of a CM is the 
program p ∈ 𝖃 stored in the program tape and with 
the arrow head scanning the left-most square which 
is blank. As for the work tape, it is occupied with the 
input data q ∈ 𝖃 and the arrow head is scanning the 
left-most bit (initial bit) of q. After the initial state, the 

CM starts operating like a TM: the arrow head only 
moves on the program tape to the right, while the 
arrow head can move left/right on the work tape; the 
arrow head can read and erase the square of the work 
tape being scanned. The CM will halt if the arrow head 
reaches the right-most square of the program tape, gi-
ving a certain output result C(p, q) =: x ∈ 𝖃; otherwise, 
C(p, q) is not defined and does not halt. Exactly as with 
ordinary Turing machines, the CM moves step by step 
following a previously given finite table that completely 
determines the computation for the argument (p, q).

Notice that this construction of a TM is self-delimi-
ting since the read arrow head cannot read-off the 
right-most square of the finite program tape. Also, in 
an ordinary TM, a program that halts is necessarily 
prefix-free: it cannot be extended into another pro-
gram that halts.

Procedures exist to make a given set of bit-strings 
into a self-delimiting set. For a bit-string x we cons-
truct a new bit-string by appending to it a prefix de-
pending on its length |x| =: n as follows:

For instance, from the above 𝖃2 we construct 𝖃S
2= 

{010, 011, 00101, 00110} ⊂ 𝖃4, which is prefix-free. 
Thus, the length increases only by an additive loga-
rithmic term in the transition from a bit-string to its 
self-delimiting presentation:

asymptotically. An important property is that uni-
versal Chaitin Machines also exist: the universal CM 
U starts reading a prefix-free program πc that indi-
cates which CM to simulate, followed by the binary 
program for that machine, U(πcp) = C(p), with p also 
prefix-free. The whole input program for U can also 
be made prefix-free.

III. ... AND WHAT YOU CANNOT COMPUTE

It is a twist of fate that in the same paper where Tu-
ring shows what we can compute in a very precise and 
universal way ... he also proves that there are things 
that we cannot compute at all.

Gödel’s theorem on incompleteness (Gödel, 1931) 
was a first shock for the foundations of Mathematics 
as a complete formal logical system. The latter was 
the attitude predominant before and well represen-

http://dx.doi.org/10.3989/arbor.2013.764n6006
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ted by David Hilbert. Yet, the real impact of Gödel’s 
was still under debate in the Mathematics community 
and there was the impression that they were a kind of 
minor anomaly that would not affect the whole buil-
ding of the theory. Turing’s non-computability results 
were even more demolishing for the fundamentals of 
Mathematics since he showed that a very important 
example of Gödel’s results was also at the heart of 
computation, algorithmic, something very practical 
and with a lot of impact in the future.

It is easy to write programs, in pseudocode, that will 
never halt:

will loop forever. Another less evident example of 
looping program is:

It produces the cycle 1, 4, 2, 1 forever.

Thus, a skilled debugger may envisage the task of 
finding all possible loops in programs and with a look-
up table, get rid of them. Or maybe, one has to study 
more and it is necessary to classify families of loops 
etc. Turing’s proof shows that this dream is impossible 
and does not depend on how smart the debugger is. It 
is at the roots of computational theory. In fact, we can 
guess that the purposed debugger may easily run into 
unknown territory. For instance, we can use the Co-
llatz conjecture (Collatz, 1937) to write the following 
simple program:

It has been confirmed that this program stops for 
very large values, n ≤ 20 x 258 (Oliveira e Silva, 2012), 
but it is unknown whether it halts ∀n � N. The conjec-
ture remains unproven. A modification of it can has 
been proved to be undecidable (Kurtz, Simon, 2007), 
but the modification does not apply to the original 
conjecture.

A basic and fundamental result of the notion of a 
TM is that the set of TMs is countable, infinitely de-
numerable. It corresponds to bit-strings 𝖃. This is the 

power of TMs ... and also its weakness. Although we 
know that its cardinality is infinity, after Cantor we 
know that not all infinities are alike. In particular, |𝖃| 
is an infinity equal to the infinity of the real numbers 
N. This is easily obtained by seeing a bit-string as the 
binary representation of an integer number in base 2:

 n = ∑∞
n=0 xn2

n.

Cantor’s diagonal method provides a clever way 
to see that there are more real numbers R than 
natural numbers N (Cantor, 1891; Suppes, 1960; 
Dauben, 1979).

Cantor’s Diagonal Method: it is a technique in set 
theory to create a new element which is not an ele-
ment of a previously given set of elements.

As an illustration, consider the following table whe-
re we place eight bit-strings 𝕾 := {x1, x2, ... , x8} ⊂ 𝖃. 
From this, we can construct another element x9 ∉ 𝕾: 
select the diagonal of the table and negate each of its 
bits. Then, we get x9 := 00000000 which is new.

The diagonal method is very general. It applies both 
to finite sets like 𝖃, or infinite sets like 𝖃∞: the set of 
infinite binary strings. A consequence of this is that 
𝖃∞ has infinite cardinality but it is uncountable. To 
show this, we proof it by reductio ad absurdum. Assu-
me that 𝖃∞ is countable so that we make a table like 
(7) with infinite elements ordered by the integers N. 
All elements are thus listed, but with the diagonal we 
can create another bit-string xd:

where xi,i is the ith bit of the ith listed element of 𝖃∞. 
But then, xd ∉ 𝖃∞, which is a contradiction. The as-
sumption that 𝖃∞ was a countable set is not true.

In fact, we can go on and prove that the set of real 
numbers R is uncountable by establishing a bijection 
between 𝖃∞ and R. Both N and R are infinite sets, 
but of a different quality. The cardinality of N is de-
noted by ּ0א. R has the cardinality of the continuum.

http://dx.doi.org/10.3989/arbor.2013.764n6006
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Continuum Hypothesis (CH): it states that the car-
dinality of R is ּ1א, the second transfinite cardinal in-
troduced by Cantor, or equivalently, that every infinite 
subset of R must apply bijectively on either N or on 
R itself: 2ּ1אּ = 0א.

In other words, there is no set with an intermediate 
cardinality between N and R, there is a gap. CH was 
introduced by Cantor but was unable to prove it (Dau-
ben, 1979). It is the first of Hilbert’s twenty-three pro-
blems proposed in 1900. Gödel proved that CH is con-
sistent with axiomatic set theory (Gödel, 1940), but 
Paul J. Cohen also proved that the negation of CH is 
also consistent with the axioms of set theory (Cohen, 
1963). Thus, CH is undecidable or non-computable. It 
is independent of standard axiomatic set theory (Zer-
melo—Fraenkel set theory).

Non-Computable Numbers: a real number non-
computable by a TM.

The set of computable reals with a TM is quite small. 
Given a TM with |S| internal states, it can compute 
about (4 |S| + 4)2|S| different numbers. Using Cantor’s 
diagonal method, Turing was able to prove that the-
re are uncountably many noncomputable numbers. 
Most of the real numbers, the continuum, is inacces-
sible to a TM.

The diagonal method has proved extremely use-
ful in fundamental problems of Mathematics. Some 
instances are Russell’s paradox in set theory, Gödel’s 
first theorem of incompleteness and Turing’s solu-
tion to the 10th Hilbert’s problem. Halting Problem: 
There is no way to find whether a computer will 
eventually halt.

A crucial assumption in Turing’s formulation of this 
problem is that there is no limit for the running time 
of the computer. By computer is meant a TM. Under 
these circumstances, there is no mechanical procedu-
re that can decide in advance whether a computer will 
ever halt. A more formal statement is the following:

Let H be the set of subsets, such that each subset 
corresponds to a Turing Machines Tn , n ∈ N and all its 
programs that halt when input on Tn. Each program 
can also be labelled with an integer m ∈ N. Thus, the 
allegedly total halting set is

In bit-string notation Tn(m) := Trn (pm , 0), i.e., input 
data q = 0, the program pm ∈ 𝖃 is the bit-string of the 
natural number m and similarly for the bit-string xr la-
belling TMs. Each subset of H is the halting set of a 
TM Hn:

Now, we are in the situation of applying Cantor’s 
diagonal method. The set H can be arranged as a table 
(7), with Hn  being the rows. Let us define a ‘diagonal’ 
set D as follows:

By construction, D is a set of natural numbers that is 
different from any halting set Hn  of any TM. Therefo-
re, the original goal of determining the set H of all hal-
ting machines cannot be accomplished and thus, we 
can never know in general when a TM will ever halt.

Turing did not use the terminology of `halting pro-
blem’ in his 1936 paper (Turing, 1936). It seems that 
the first time this was used was by Martin Davis (Da-
vis, 1965; Copeland, 2004).

After Turing found an explicit and crucial example 
of a non-computable problem, it was natural to ask 
whether more examples of this kind could be found. 
In 1962, T. Radó (Radó, 1962) proposed another in-
teresting non-computable function (Galindo, Martin-
Delgado, 2002).

Busy Beaver Function: it is the maximum number of 
digits 1s that appear as output x in a TM T that runs 
over all programs p that halt on no input q = Λ:

where |x (1)| is the number of 1s in x ∈ 𝖃. There are 
several variants of Busy Beaver functions that have the 
same property of being non-computable and are more 
manageable definitions. For instance, as the maximum 
integer number that can be named with a universal TM 
U with programs of a given size |p| =: N. Thus, a N-th 
Busy Beaver function is denoted ∑N and defined

http://dx.doi.org/10.3989/arbor.2013.764n6006
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This is a well-defined function ∑N  : N → N, but it 
is noncomputable: it grows faster than any computa-
ble function f (N), ∑N > f (N) for sufficiently large N. 
Therefore, ∑N cannot be bounded in the form of ∑N = 
O(f (N)). The proof goes by reductio ad adsurdum: if 
it could be bounded, then the halting problem would 
be computable. More examples of non-computable 
functions can be obtained systematically by means of 
the Algorithmic Information Theory (AIT) (Solomonoff, 
1964; Kolmogorov ,1965; Chaitin, 1966).

After Turing’s halting problem, we may ask: can 
we quantify non-computability on mathematical 
grounds? G. Chaitin has done a great deal of work 
(Chaitin, 1975; Chaitin, 1987; Chaitin, 2001; Chaitin, 
2003) by approaching this issue from information-
theoretical methods. He has developed the concept 
of what it known as Chaitin’s Ω number, which allows 
us to address this fundamental question. Thus, we 
need to introduce some basic concepts and results 
from AIT.

Algorithmic Information Theory (AIT): it is a part 
of Information Theory that deals with the algorithmic 
complexity of functions and problems. The algorith-
mic complexity of a program p ∈ 𝖃 refers to its pro-
gram-size, i.e., bits of information regardless the run-
time that a machine like a TM takes to execute it. It is 
defined as the shortest program that can reproduce a 
given string x in a universal TM:

A first consequence of this definition is that H(x) 
is not computable itself, for two reasons: due to the 
halting problem, we never know when the programs 
will halt, and because it is a minimization procedu-
re. Moreover, it is not possible to compute lower 
bounds to H(x) . What is possible is to give the upper 
bounds. These are good enough to gain a great deal 
of insight into a given problem. For instance, we can 
give an alternative definition to the Busy Beaver 
function:

where the algorithmic complexity (14) is defined for 
programs p that compute k = U(p) without input and 
halting.

Although non-computable, algorithmic complexity 
is well-defined and it has very useful properties like 
subadditivity: the joint complexity is bounded by the 
sum of the complexities of the individuals:

This allows us to construct big programs out of small 
ones. Another crucial property follows from a proper 
definition of relative entropy H(y|x)

Thus, the joint complexity of two bit-strings can be 
computed knowing the absolute complexity of the 
first one plus the relative complexity of the second gi-
ven the first one. The key point for this result to hold 
true is the definition of relative complexity of y given 
x, H(y|x*): the size in bits of the smallest self-delimi-
ting program for calculating y if we are given for free, 
not x directly, but x*, a minimum-size self-delimiting 
program for x.

A fundamental property of Chaitin machines is that 
they allow us to define halting probabilities for TMs, or 
the algorithmic probability of a bit-string, also known 
as universal probability PU (x) of a given string x ∈ 𝖃:

which is the probability that a program randomly 
drawn as a sequence of fair coin flips p = p1 p2 ... will 
compute the string x. This is well-defined thanks to 
the prefix-free property of CMs and results from 
AIT (Chaitin, 1975; Chaitin, 1987; Chaitin, 2001; 
Chaitin, 2003).

A central theorem relates algorithmic complexities 
with algorithmic probabilities:

This relation tells us that near-minimum size pro-
grams for calculating something, elegant programs, 
are essentially unique. This is a mathematical for-
mulation of Occam’s Razor. Essentially, this relation 
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tells us that AIT is equivalent to Probability Theory, 
although this probability has to do with randomness 
in programs, rather than statistical randomness but 
we shall get back to this later.

The idea behind structural or logical randomness is 
lack of structure or pattern in a program or bit-string. 
Thus, a program or bit-string is random if it has no 
pattern or inner structure, consequently, it cannot be 
compressed. The only way to address it is by printing 
the whole program as it is: there is no theory behind 
it from which it can be derived. By theory, we mean 
a simpler procedure to recover the bit-string, i.e. so-
mething compressible. Now, we can give a precise 
definition of randomness using information-theoretic 
notions like algorithmic complexity. This was defen-
ded by Chaitin in AIT. It is necessary to distinguish bet-
ween finite bit-strings x ∈ 𝖃 (|x|=: n < ∞, and infinite 
bit-strings x � 𝖃∞, x = (xn )

∞
n=1 (Chaitin, 2001):

i/ Random finite bit-strings:

ii/ Random infinite bit-strings:

Notice that n + H(n) is the greatest possible com-
plexity  –and also the typical complexity– of a fini-
te bit-string. Equivalently, the relative complexity 
H(x|n)≈n. As for infinite bit-strings, it is required that 
the partial series of bit-strings xn always be as random 
as possible.

It is possible to prove that the definition of random-
ness for infinite strings from AIT (21) is equivalent to 
the statistical definition of random real numbers in 
classical probabilistic theory, as introduced by Martin-
Löf (Martin-Löf, 1966) and Solovay (Chaitin, 2001). 
This is a very remarkable result since the origin of AIT 
randomness is conceptually different and related to a 
lack of logical structure in a set of programs. It is very 
nice that both types of definitions produce exactly the 
same infinite random sequences (Li, Vitanyi, 1990; Ca-
lude, 2002; Calude, Dinneen, Shu, 2002). Moreover, 
for finite bit-strings AIT also provides a definition of 
randomness.

We can now define Chaitin’s Ω number and use it 
to assess logical randomness in Information Theory, 

the issue of non-computability. The motivation is to 
define the halting probability of a TM, i.e.,

where the sum runs over prefix-free strings and the 
universal computer U is a Chaitin machine. This way, 
Ω can be thought of as an average on the Turing hal-
ting problem. It is possible to give a more explicit ex-
pression as follows:

It measures the probability that a randomly chosen 
program p will halt when run in a universal TM U that 
halts. This follows from the definition of PU (x). It is 
a well-defined probability for: i/ only self-delimiting 
programs are allowed; ii/ thus, the sum is convergent 
due to the Kraft inequality (Cover, Thomas, 2006); iii/ 
0 < Ω < 1, because there are always programs that halt 
and also programs that never halt. Alternatively, we 
can use algorithmic complexity to define it:

What is behind Ω is a very compact way of encoding 
the halting problem, or any other non-computable 
problem.

The Chaitin Ω number is a real number in (0, 1) 
which is logically random (21): let us truncate it up to 
programs of bit-size N,

then, it is possible to prove that H(ΩN ) > N - c, ∀N and 
certain constant c. Ω is algorithmically random and 
incompressible. These ΩN are lower bounds to the 
actual Ω. This truncation also produces an unboun-
ded function ΩN that reflects its non-computability. 
Knowing the first N bits of Ω, i.e., the binary expan-
sion of ΩN := 0.w1w2 ... wN then it is possible to decide 
the truth of N-bit theorems. By construction, knowing 
ΩN enables us to decide all programs of length |p| < N 
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that halt. Now, for instance, it is possible to write a 
program that searches for solution of the Collatz con-
jecture (6) and halts only if a counterexample is found. 
Knowing suffi ciently long string bits of Ω enables us 
to decide whether a well-defined problem, according 
to a formal theory, is a theorem, a non-theorem or 
independent.

After having met the limits of computability, the 
natural question is: can we go beyond them? This 
depends on what is called the Turing barrier (Fe-
ynman, 1982; Berstein, Vazirani, 1997; Calude, Pa-
vlolv, 2002; Kieu, 2003), that is stated as follows. 
Turing Barrier: there is no way whatsoever to beat 
the halting problem.

This notion has originated a line or resesearch ca-
lled Hypercomputation. It speculates that it is possi-
ble to devise theoretical or physical machines that can 
compute problems that are non-computable by the 
TM model (Copeland, Proudfoot, 1999).

IV. PRECURSORS OF TURING ON COMPUTABILITY

The following list by no means aims to give a full ac-
count of everyone who might have been involved di-
rectly or indirectly in research touching upon Turing’s 
work, but simply to present some important facts that 
are interesting in connection to his work and later 
developments. Due to space constraints we cannot 
dwell upon the work of such as Georg Cantor (the dia-
gonal method (Cantor, 1891), cardinalities (Dauben, 
1979), David Hilbert (the axiomatic method in (Hil-
bert, 1927), Émile Borel (normal sequences in (Borel, 
1909), the inaccessible number (Borel, 1952) etc. that 
nevertheless will appear mentioned along the way.

A. Gottfried W. Leibniz

Leibniz made a crucial discovery that today is taken 
for granted but was a major breakthrough in compu-
tational theory: the binary numeral system (base 2) 
{0, 1} as a system for calculus. He went on to create 
a mechanical machine that worked simple multiplica-
tion operations with this binary system. He dreamt of 
human reason reduced to calculation and of powerful 
mechanical engines to carry out those calculations.

Leibniz asked and thought about fundamental 
questions and ideas about what is Science and Natu-
re (Chaitin, 2009). They play a central role in modern 
scientific methodology. One of these questions he 
asked was: is there any difference between a world 
without laws of nature and a world described by laws? 

How can we tell the difference? Today this looks pretty 
obvious after the enormous success of the scienti-
fic method over the last three hundred years or so. 
But Leibniz analysis was made in 1686 (Leibniz, 1686) 
(another celebration in this year 2011) one year be-
fore the Newton’s Principia were published (Newton, 
1687). The mechanistic view of the world was not at 
all predominant.

In addressing those questions, Leibniz touched 
upon the roots of what a physical law must be: sim-
plicity must be the key. To show this, he posed a very 
concrete mathematical example. Suppose you are 
given a set of points in a plane that represent the 
experimental data you want to explain by a law. It is 
well-known from interpolation techniques, like La
grangian interpolation, which he anticipated, that 
we can always find a function that fits a given finite 
number of points. How do we know then, that a phy-
sical law exists behind them? Leibniz’s answer is: only 
if the rule to fit the data is simple enough. His basic 
principle is Occam’s Razor. With Turing, we know how 
to quantify complexity for instance by means of the 
notion of compression.

Leibniz also stated that the Universe has a duality 
relationship between complexity vs. simplicity. On 
one side, the Universe is extremely diverse and rich, 
complex. On the other hand, it can be made out of 
very simple rules that we call fundamental laws. Com-
plexity out of simplicity: like in a Beethoven symphony. 
In today’s computer age we have a typical example of 
this phenomenon: a laptop computer can produce a 
fabulous number of complicated images, movies, ga-
mes etc. Yet, all there is underneath is Leibniz’s binary 
system. In this way, he anticipated the notion of emer
gent phenomena that is so influential and modern in 
theoretical physics.

B. Hermann K.H. Weyl

Weyl became interested in Mathematical Lo-
gic and the foundations of Mathematics since his 
thesis supervisor was David Hilbert in Gottingen. 
He wrote a thorough book (Weyl, 1949) on these 
topics in which he calls the attention of Leibniz’s 
unpublished work (Leibniz, 1686) on the nature of 
a physical law and science. Weyl discussed on the 
character of mathematical cognition, the axiomatic 
method and natural science.

He states that the problem of simplicity is of cen-
tral importance for the epistemology of the natural 
sciences. As an example of the principle of simplici-
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ty in physics, he claims that it is a sure sign of being 
on the wrong scent if one’s theory suffers the fate of 
Ptolemy’s epicycles whose number had to be increa-
sed every time the accuracy of observation improved. 
The three laws of Kepler were much simpler and yet 
agreed noticeably better with the observations than 
the most complicated system of epicycles that had 
been dreamed up.

Weyl took Leibniz’s thoughts about complexity to 
the extreme case and established that if we allow ar-
bitrary high complexity in a law of physics, then the 
law ceases to be a law ... because then there is always 
a law. Thus, some sort of balance has to be reached.

Admitting that the concept of simplicity appears to 
be so inaccessible to objective formulation, he failed 
to come up with a precise definition of complexity, 
see Sect.VI.

C. Kurt F. Gödel

In year 1931 Gödel surprised the great mathema-
ticians of his time by showing that Hilbert’s propo-
sal of finding a complete axiomatic formalization 
of Mathematics was impossible (Gödel, 1931). This 
was shocking since it was as if the ultimate goal of 
Mathematics, its raison d’être, could not be achie-
ved. Von Neumann was the first to realize that Gödel 
was correct even before his publication by attending 
a conference by Gödel in Könisberg. Subsequently, 
Weyl and others had to concede as well that he was 
right. Gödel was a great admirer of Leibniz and stu-
died his works thoroughly.

A common misconception about Gödel’s work is 
that it is destructive towards Mathematics since it 
looks like an attack on what Mathematics was un-
derstood to be: a well-defined formal system to sol-
ve problems. Quite the contrary, this objective is still 
true after Gödel’s results, but has to be revised and 
made precise by considering incompleteness as a key 
ingredient in Mathematics. Although people think 
that Gödel’s theorem was bad news, a closer analy-
sis reveals that it was good news and positive as it 
allowed creativity to play a key role in the founda-
tions of Mathematics, and this can be done in a rigo-
rous way as it demands.

The heart of Gödel’s proof relies is using a self-refe-
rence proposition like

or equivalently, the liar’s paradox

to undermine the logical system of Hilbert and fo-
llowers. The latter was based on a set of axioms from 
which the proof of theorems followed like a mecha-
nical checker. Whichever option you take on the sta-
tement (26), (27), true or false, you get the opposite. 
Then, Gödel went on performing a series of trans-
formations into that initial paradox, some of them 
involving properties of prime numbers, and making 
it into definite statements in number theory. And 
this was very clever and imaginative. As such, one 
cannot ignore a statement in number theory which 
is not provable. Hence, Godel’s results deserved to 
be taken seriously.

In year 1936 Turing gave a second and definitive sur-
prise to the community of mathematicians by proving 
the existence of non-computable problems, providing 
an explicit example. His result can be seen as an ins-
tance of Gödel’s result, but much simpler to unders-
tand and, at the same time, it played a central role in 
the theory of computation.

When time gives more perspective to Godel’s work, 
it will be considered similarly to what happened with 
the advent of non-Ecludian  geometry in the XIX cen-
tury, or more plainly, how the discovery of irrational 
numbers shocked the Pythagoreans dreams.

V. COMPUTABILITY AFTER TURING

The same applies to those who developed Turing’s 
theory further as to his predecessors, and with the 
same proviso on the number of figures that should be 
mentioned. For instance, all the recipients of the Turing 
award (Association for Computing Machinery, 2001).

A. Tibor Radó

Radó made a great contribution in the theory of 
Turing Machines in his later life, in 1962, three years 
before his death and after having accomplished ma-
jor contributions in other fields of Mathematics: he 
solved the plateau problem, discovered essentially 
unique triangulations of surfaces, and made many 
other important contributions in conformal map-
pings, real analysis, calculus of variations, subhar-
monic functions, potential theory, partial differential 
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equations, integration theory, differential geometry, 
and topology.

He invented the Busy Beaver function (Radó, 1962), 
another example of non-computable function after 
Turing (15).

B. Gregory J. Chaitin

Gregory J. Chaitin, together with Ray Solomonoff 
and Andrei N. Kolmogorov, are the founding fathers 
of the subject called Algorithmic Complexity, Kol-
mogorov Complexity, or Algorithmic Information 
Theory (AIT) (Solomonoff, 1964, Kolmogorov, 1965, 
Chaitin, 1966).

Chaitin approached the two fundamental disco-
veries by Godel 1931 and Turing 1936 and his as-
sessment was that they were just the tip of the ice-
berg. Those were not isolated marginal results, but 
were the natural case in Mathematics rather than 
the exception. Those results implied that in some 
parts of Mathematics, it was possible to have lack of 
structure, of patterns, a sort of randomness intrinsic 
to the theory and not because we were unable to 
make it better. This randomness means logical ran-
domness, not statistical randomness though they are 
related as we have seen in Sect.III. Chaitin realized 
that logical randomness could be ubiquitous in Ma-
thematics and started off the development of AIT in 
a form that can be considered it as the natural evolu-
tion of the work by Turing.

Gödel’s theorem can be traced back to the `liar’s 
paradox’ (27) while Chaitin’s halting probability is re-
lated to the `Berry’s paradox’:

In principle, that proposition defines a certain po-
sitive integer since the set of words is finite while the 
set of integers is infinite. However, as that proposition 
has only ten words, it cannot be defined by that (28). 
This is the paradox. A similar situation arises in the 
definition of algorithmic complexity (14): if algorith-
mic complexity were computable by a TM, then simi-
lar paradoxes to (28) would appear. Berry’s paradox 
was formulated by B. Russell inspired by a librarian at 
Oxford whose name was G.G. Berry. Chaitin explains 
that he wanted to show Gödel in 1974 how he could 
prove the incompleteness theorem using Berry’s pa-
radox instead of liar’s paradox (27), but Chaitin was 
not able to meet Gödel.

He introduced the Ω number: the halting probabi-
lity of a Turing machines (24). It is a natural example 
of a random infinite sequence of bits. Besides provi-
ding a connection with the work of Turing, Ω makes 
randomness in Mathematics more concrete and more 
believable. Chaitin has shown that this logical ran-
domness is at the very heart of pure Mathematics: 
provable theorems are islands surrounded by vast 
oceans of unprovable truths.

C. David E. Deutsch

David Deutsch culminated the formulation of a 
quantum computer in a way that it is a well-establis-
hed extension of the work by Turing into the quantum 
world. R.P. Feynman gave fundamental steps prior 
to him, as well as P. Benioff. A precise definition of a 
quantum TM and its functioning can be found in Ga-
lindo and Martin-Delgado (Galindo, Martin-Delgado, 
2002). Deutsch reformulated the Church-Turing the-
sis into a version usually called the Church-Turing-
Deutsch principle:

“Every finitely realizable physical system can be per-
fectly simulated by a universal model computing ma-
chine operating by finite means.”

This is a further extension of the Turing hypothesis 
into the physical world.

Quantum versions of algorithmic complexity, Sect.
IIl, has been formulated (Vitanyi, 2000; Berthiaume, 
van Dam, La-plante, 2000; Gacs, 2001; Mora, Brie-
gel, 2005; Mora, Briegel, 2004; Mora, Briegel, Kraus, 
2006), as well as quantum versions of the Ω number 
(Svozil, 1995; Svozil, 1995b).

VI. NOTIONS AND DEFINITIONS OF COMPLEXITY

Complexity is a word that has proliferated in a large 
number of scientific disciplines: ... Most of the time, 
its use is rather vague, volatile and qualitative. After 
Turing, it is important to realize that a rigorous, ma-
thematical definition of complexity can be given and 
made quantifiable.

A very primitive and inefficient way to assess com-
plexity in Mathematics is to define it in terms of how 
long or difficult it is to write the equations of a given 
theory. Naive as it may look, its use is very widespread 
in the scientific community. This is not appropriate 
since this notion is very dependent on the language 
we use to write equations, and this may change over 
the times. A proper definition of complexity calls for 
something more intrinsic.
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If we want to quantify the complexity of a theory 
or discipline, we must look at how it relates to the 
experimental data that it wants to explain. Thus, we 
consider the pair formed by a given theory and its ex-
perimental data, and map it into another pair which is 
a program that produces a certain output:

This latter pair is related to a computer that takes 
the program and finds the output. We can call this a 
computational mapping 𝔈. With this mapping, now 
we can apply complexity theory from computer scien-
ce in order to find the complexity of a certain theory 
or discipline. This is an information-theoretic appro-
ach to study complexity by using Turing’s ideas in or-
der to make things more precise.

In Information Theory (IT), there are two major no-
tions of complexity: algorithmic complexity and com-
putational complexity.

Algorithmic Complexity: it cares about the pro-
gram-size complexity, i.e., bits of information regar-
dless the runtime of a computer, following the ideas 
of how a TM works. We have explained it in detail in 
Sect.III.

This notion of complexity has no practical applica-
tions per se. It is very useful to study the fundamen-
tals of Mathematics and its foundations.

Although algorithmic complexity is somewhat con-
ceptual, it may be also very inspiring in practical cases. 
There is an example that captures the essence of this 
complexity: the language used for storing image files. 
There are two basic procedures: using bitmap gra-
phics or vectorial graphics. The former takes a brute 
force approach, storing all the bits of a given image. 
The latter is more elegant since it tries to store the for-
mula that generates a particular image. This is more 
efficient and versatile since it preserves the image un-
der change of scale.

A recent new development by Chaitin is to use AIT 
concepts and tools in order to give a mathematical 
proof of Darwin’s theory of evolution (Chaitin, 2011; 
Chaitin, 2012; Chaitin, 2012b). With quantum versions 
of AIT, like new quantum Ω numbers, it is possible 
to study quantum effects in the theory of evolution 
(Martin-Delgado, 2011).

For more practical purposes, the notion of compu-
tational complexity is preferred. Once a problem is de-

clared computable, then we need to know if we can 
compute it efficiently or we cannot. This leads to the 
notion of computational complexity.

Computational Complexity: this evaluates the re-
sources needed by a computer to solve a problem and 
how they scale with the typical size of the problem. 
Time complexity refers to how many steps are needed 
to solve a problem. Space complexity refers to how 
much memory is needed to solve the problem.

Many computational tasks can be decomposed in 
simpler parts called decision problems.

Decision Problem: it is a problem defined by an 
algorithm stated as a question whose answer is yes 
or not, equivalently, 1 or O. For instance: `Is N a pri-
me number?’, and the like. Recall that we know from 
Sect.II that a Turing machine T is the formal defini-
tion of an algorithm. The TM associated to a deci-
sion problem is an application T : 𝖃 → {0,1}. Other 
important problems like `search’ or `optimization’ 
can be decomposed into decision problems. Now, 
with the notion of a TM we can define precisely time 
complexity and space complexity.

Time Complexity: Given a decision problem charac-
terized by a TM T, it is the number of steps t(N) that 
the TM takes before it halts and solves the problem. 
N represents the size of the input. One is normally 
interested in the study on the scaling of t(N) for large 
N, or finding good upper bounds. Donald Knuth has 
done some groundbreaking work on the analysis and 
performance of algorithms (Knuth, 2000).

Space Complexity: Given a decision problem 
characterized by a TM T, it is the number of squa-
res s(N) of the work tape scanned by the TM be-
fore it halts. Similar considerations apply as for 
time complexity.

It is very convenient to arrange sets of problems 
with the same complexity behaviour into complexity 
classes.

Complexity Class: is a set of decision problems that 
share the same type of time or space complexity ac-
cording to some condition that is imposed on the pro-
blem, which defines the class itself.

The most important class is the one that defines 
theoretically what an efficient algorithm is. This is the 
class P.

P : it is the class of decision problems that are solva-
ble in polynomial time. The time of the algorithm, or 
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associated TM, is bounded as t(N) ≤ cNk, for certain c 
� R, k ∈ N. The real constant c is called the overhead 
of the algorithm, and it is convenient that the inte-
ger k be the lowest possible. Arithmetic operations 
like adding or multiplying, or the Gauss elimination 
method for solving linear equations are examples of 
algorithms in P.

PSPACE : it is the class of decision problems that 
are solvable in polynomial memory space. Thus, the 
space of the algorithm, or associated TM, is bounded 
as s(N) ≤ cNk, for certain c ∈ R, k ∈ N.

The class P is theoretically a natural choice of what 
an efficient algorithm is. The reason is that it is closed 
under operations that arise naturally in computation, 
like sum, product or composition of polynomials that 
are again polynomials. On the contrary, examples of 
inefficient algorithms are packed in the class EXP.

EXP: it is the class of decision problems that takes 
an exponential time to solve them, t(N) ≤ e p(N) , for 
some polynomial p. For example, trial division to de-
termine whether N is a prime number is in EXP, and 
many brute force algorithms.

A central problem in solving problems in computer 
science is the difference between finding a solution 
to a problem and verifying that a certain instance is 
a solution of the problem. For instance, the decision 
problem `is N a composite number?’ is very difficult 
to solve for arbitrary N. However, if we are given a 
solution to this problem, say M, then verifying this 
instance is a matter of division and this takes poly-
nomial time. In this case, there are also polynomial 
algorithms to check whether N is composite, but not 
for finding its prime factors. The general case can be 
casted in the form of a complexity class.

NP : is the set of decision problems whose associa-
ted TM T: 𝖃 x 𝖃  {0, 1} is in class P. T(x, y) veri-
fies whether the problem defined by the bit-string x 
once an instance y is supplied. Additionally, the leng-
th of the verifier y must be polynomially bounded: 
|y| ≤ p(|x|).

With the advent of quantum Turing machines, the 
field of computational complexity has been revolutio-
nized and enriched. New complexity classes can be 
defined substituting the classical TM by a quantum 
version. For instance, the natural version of the class 
P for quantum computers is called BQP, for the class 
of bounded quantum polynomial problems. Scott Aa-
ronson has done systematic studies of a huge num
ber of both classical and quantum complexity classes 

(Aaronson, Kuperberg, Granade, 2005). Quantum Tu-
ring machines can also be generated by sets of quan-
tum gates (Yao, 1993), what is known as the quantum 
circuit model. Interestingly, it is possible to study the 
quantum complexity of many statistical classical sys-
tems when simulated on a quantum computer and 
still find open problems (vandenNest, Dür, Raussen-
dorf, Briegel, 2009; De las Cuevas, Dür, Van den Nest 
and Martin-Delgado, 2011).

An example of complexity class relationship is P # 
EXP. Another is P ⊂ NP and NP ⊂ EXP.

P vs. NP Problem : Is P ≠ NP?

This is considered the central problem in computa-
tional complexity, and in computer science in general. 
Behind this question is whether computational creati-
vity can be automated or not. Thus, at first it looks like 
the natural answer to this problem is yes. However, 
there are neither proofs that P ≠ NP or P = NP.

There is a third way to approach this problem. No-
tice that this problem is considered as a problem in 
complexity theory, not on computability. However, 
this is not the case. True as it is that deciding whether 
a problem is either P or NP is a complexity problem, 
the P vs. NP problem is equivalent to construct a me-
chanical procedure to decide whether it is true or fal-
se, and this is a problem on computability. Therefore, 
we have to face also the possibility that it is non-com-
putable. This means that it would be an irreducible 
axiom that one may or may not add to his theory of 
computer science and go on to produce different ty-
pes of theories, both equally valid and sensitive. Thus, 
if this third-way were true, then the natural choice P ≠ 
NP would be like Euclidean geometry, while the non-
natural choice P = NP would be like non-Euclidean 
geometry. But this is also a conjecture.

There is not accepted definition of what a complex 
system is. Qualitatively, it is usually referred to a sys-
tem compressed of various parts, usually many, such 
that they are intercon nected somehow up to a cer-
tain degree, and the behaviour of the whole system 
cannot be anticipated from the behaviour of its indivi-
dual parts. Remarkably, this is precisely the situation 
that we basically have with a TMs working with sim-
ple binary system given rise to both computable and 
non-computable behaviours, Sect.II, III. Thus, when 
the computational mapping (29) can be applied to a 
certain system, arbitrary as it may be, we may give a 
sufficient criterion for having complex behaviour by 
appealing to the notion of a hard problem:

http://dx.doi.org/10.3989/arbor.2013.764n6006
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NP Hard Problem: when some problem, not neces-
sarily in NP, can be solved by an algorithm that can be 
reduced to one capable of solving any problem in NP, 
then it is called NP-hard. A problem that is both NP 
and NP-hard is called NP-complete.

When a problem can be solved by an algorithm that 
can be reduced to one that can solve any problem in 
NP, then it is called NP-hard. A problem that is both 
NP and NP-hard is called NP-complete. These pro-
blems are at least as hard as the hardest problems in 
NP. Examples of NP hard problems are the `subset 
sum problem’ and the ̀ travelling salesman’. They both 
are also NP complete. If P ≠ NP, then NP ≠ NP Hard, 
otherwise, they are equal.

VII. SOME APPLICATIONS 
A. A Practitioner’s Critique to Complexity Class P

The notion of an efficient algorithm is defined by 
means of class P as explained in Sect.VI. There we 
saw that a good theoretical definition for this class 
P is that it is closed under natural operations that 
occur in computations. However, theoretically well-
sounded as it may be, it runs into problems when 
dealing with practical cases and real computers. 
For instance, an algorithm with a time complexity 
growing like t(N) ~ N100 would never attract the in-
terest of any programmer. It would be good to com-
plement that notion of theoretical efficiency with 
another of `practical efficiency’.

Let us consider the following practical situation. We 
are given an algorithm whose time complexity is in P 
as it grows thus:

where t is now the real clock-time taken by the com-
puter to achieve the solution of a given problem who-
se size is characterized by N. The integer k is fixed by 
the time complexity of the algorithm, and the cons-
tant c’ takes into account the conversion between 
theoretical time-steps and real time. With the real 
computer we may have been able to obtain a certain 
set of points, simulation data:

up to a maximum achievable size Nmax , which will de-
pend on the technological resources available when 
obtaining the data (31). It may so happen, and it is 
currently the case, that the set of data is not enough 
to discover a law we are searching for. This is another 
version of the situation thought by Leibniz in Sect.IV. 
Thus, we need a bigger value of Nmax , but we are li-
mited by the technological resources of our time, i.e., 
the time of the data (31). In order to assess how good 
the time complexity (30) is, we need to compare with 
the estimated improvement of the technological re-
sources. An example of this is Moore’s law for compu-
ters (Moore, 1965). Following this, we may have found 
that our technology to build real computers behave as 
another power law with respect to the minimum size 
lmin of the computer chips that run the computations. 
Thus, the smaller the size the faster the computer:

where c” is a constant and a a scaling exponent known 
experimentally.

In order to discover the law, we need to increase 
the maximum current size Nmax by a certain factor 
f > 1, such that the set of data up to f Nmax is now 
enough to determine the pattern. The question in 
turn is how much we need to improve our technolo-
gy in order to achieve this. Thus, we can derive a sort 
of uncertainty relation between Nmax and lmin:

with c := c”/c’  a  fixed constant. The integer  exponent  k  is
fixed by the class P of the algorithm and we want to know 
how to improve Nmax depending on the relative value of α 
w.r.t. k. Thus, we have Nmax = const/lmin

α/k. A possible 
situation could be that k = α, then a linear decrease 
in the chip technology will yield an increase in the 
maximum size. A better situation is when k << α since 
then the improvement will be over previous pay off. 
However, the worst situation occurs when k >> α. In 
the limit case of k  ∞, the maximum size would be 
insensitive to any technological improvement.

Therefore, a practical criterion for the class P is to 
compare the integer k with the technological scaling 
exponent α, i.e. k vs. α, rather than the more theoreti-
cal criterion of comparing k vs. ∞.

http://dx.doi.org/10.3989/arbor.2013.764n6006
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Another important practical case we may face is 
the existence of technological barriers. For example, 
today computer technology has reached the nanome-
tre scale. Suppose we have a certain set of data like 
(31) obtained with a class P algorithm, but we need 
to increase the maximum size by a factor f > 1 such 
that then we need to go down well beyond the size of 
angstroms. Then, for those smaller sizes, the compu-
ter leaves the classical behaviour and enter the realm 
of quantum mechanics, so that we may well need a 
quantum computer to expand the range of data and 
be able to find our law.

B. On the Halting Problem in Chess

The halting problem has many implications as we 
have shown. It is a concept of practical use in games, 
particularly in advanced games like chess. There, it 
is important to make sure that the rules of the game 
(axioms) will ensure that the match will terminate. 
Until 1929, players were not aware that the set of 
rules already known made it possible to produce ne-
ver-ending chess matches. In that year, Max Euwe, a 
mathematician later to become the fifth world chess 
champion of modern history 1935-37, settled the 
question by rediscovering the Thue-Marston (Thue, 
1906) sequence and its cube-free property.

In binary language, the Thue-Marston sequence is 
defined by the following generating moves:

For instance, the first elements of the sequence are

An element of a sequence is cube-free if it contains 
no subsequence of the form ppp, where p is a finite 
non-empty element.

A chess match is divided in three parts: opening, 
middle-game and end-game. The end-game is cha-
racterized by the presence of very few pieces on the 
board compared to the opening. Thus, a theory of the 
end-game in chess is highly developed as its complexi-
ty is reduced. It had been known that repetition of 

movements, a loop, may happen in certain situations. 
Rules were established to declare a draw when rep
etition of moves become endless. Euwe (Euwe, 1929) 
used the cubic-free property of the Thue-Marston se-
quence to show how to circumvent those rules. Thus, 
new rules had to be added to the game. This is ano-
ther instance of how axioms, i.e. rules, may be chan-
ged a posteriori depending on the type of theory we 
want to have.

When Bobby Fischer was an active chess player, 
he would say “Gods put the middle game after the 
opening”, meaning that the complexity of the middle 
game was so high that it was unknown territory, whe-
re written manuals for openings were useless, and he 
would feel at his best. After retirement, in the 1980’s 
Fischer sent a warning call saying that chess was be
coming too technical, mechanical and with little room 
for creativity. He proposed to change the rules of the 
opening somehow, interestingly enough, introducing 
some randomness in chess. In particular, by randomi-
zing the starting position of the main pieces in the first 
row of each player side. And this happened way befo-
re a computer, Deep Blue, defeated the World Chess 
Champion G. Kasparov in 1997. Many people thought 
this to be unbelievable before year 2000. This does 
not mean that computers are more intelligent than 
us, or intelligent at all. It means that their brute force 
of calculation is stronger than ours at playing chess.

C. Divertimento: On the Complexity of Music

Mozart composed many divertimentos, a musical 
form very common in the Classical era prior to the 
success of the sonata form by Haydn. We may produ-
ce a divertimento playing with Turing’s ideas in music.

Music is more than a language, but insofar as it is a 
language, we can apply Turing’s results to it and pro-
ve some amusing results which may surprise music 
theorists, particularly given that they can be proved 
mathematically.

i/ There is an endless number of different musical 
compositions.

ii/ There are musical compositions that cannot be 
composed.

Statement i/ implies that musical creativity is infini-
te, for sure, while ii/ means that, nevertheless, it also 
has some limits.

To proof i/ we use a code such that the music sym-
bols and rules of composition are encoded with a gi-
ven alphabet Α. This can be binary for instance. Then, 
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we use the same code alphabet to label all known 
compositions. This can be done by lexicographic or-
der, forming a table like (7). Now, applying the dia-
gonal method we obtain another composition which 
is certain to be new. Though it is unlikely that these 
mathematical type of compositions would have plea-
sed Mozart and Haydn, it may produce a different 
reaction in B. Bartók, A. Schongberg, J. Cage, G. Lige-
ti, K. Stockhausen, I. Xenakis, P. Boulez, C. Halffter... 
Nevertheless, what is remarkable, and unimaginable 
before Turing, is that a computer could be of help as 
a composition machine as they are used nowadays.

To prove ii/ we need to realize that each music com-
position is like a TM. Thus, it may or may not halt. 
For instance, we can produce simple scores that re-
peat themselves forever. Accepting this proviso about 
endless compositions is essential. Suppose now that 
we want to write a music composition that with our 
language would be equivalent to a program that finds 
when any other musical composition will ever halt. 
Then, that score is impossible to be written.

Cellular automata are used to produce musical sco-
res (Wolfram, 2002; Millen, 1990; Bozkurt, 2011), and 
some them are equivalent to a universal Turing machi-
ne, like the Rule 110 cellular automaton (Cook, 2004).

In the early 20th century, Arnold Schongberg  evalu
ated the situation of classical music and judged that 
the tonal system based on major and minor scales, 
Greek modes etc. was absolutely worn out. Subjective 
as this may be, he went on to search for new compo-
sition systems by relaxing the rigidities of the old sys-
tem. For instance, allowing all tones in a dodecapho-
nic scale to play the same role, without dominant or 
tonic tones. This produce non-tonal systems like the 
twelve-tone method and many others to follow, even 
by introducing random methods and other tools from 
Mathematics, like set theory. Again, that situation 
arose because creativity was judged to be exhausted, 
and a change or extension of axioms was proposed 
instead, leading to controversy. Nevertheless, contro-
versy is unavoidable here since music is more than a 
language and personal taste plays a major role.

VIII. CONCLUSIONS

Turing revolutionized the fundamental roots of 
what we understand by scientific knowledge, and he 
will continue to do so as many new applications of his 
works arise. At the same time, his scientific work still 
lacks the recognition that it deserves in his own field 
of Mathematics. As he also founded modern compu-

ter science, recognition came first mainly from Engi-
neering and Physics.

The part of Turing’s 1936 paper (Turing, 1936) de-
voted to computable numbers has given rise to the 
development of computer technology as a whole. 
This is having a gigantic impact on our culture. The 
other part of Turing’s paper devoted to the solution 
of Hilbert’s tenth problem, as a consequence of the 
previous one, has helped us to deepen our knowledge 
about scientific knowledge itself. This is best exempli-
fied by the work of Chaitin, who has formalized what 
is knowable and unknowable based on Turing’s work, 
and extending Godel’s results in a more systematic 
and accessible way. His conclusion is somewhat shoc-
king as it implies that logical randomness is common 
even in Mathematics.

There is a parallelism between intrinsic randomness 
in Mathematics and in Physics, and we can learn from 
it. In Physics it appeared in the 1920’s in Quantum 
Mechanics, and also produced a shocking revolution 
that removed the holy grail of classical Physics, deter-
minism, from the central status it had been enjoying. 
Nowadays, Quantum Mechanics is a successful theory 
and has been accepted both logically and empirically, 
due to unprecedentedly accurate experimental re-
sults. In Mathematics, logical randomness appeared 
in 1930’s and is also becoming accepted.

After the work of Gödel, Turing and Chaitin it is cer-
tain that a TOE of Mathematics is impossible. But, 
what about Physics? Inasmuch as Physics inherits the 
language of Mathematics to express its laws and work 
out its consequences, we may immediately deduce 
that the same applies to Physics and there is no TOE 
for it. However, Physics is more than a language and 
the ultimate word relies on experience, on the natural 
law. Our physical knowledge is like a window on an 
energy scale, ranging from some point in the infrared 
to some point in the ultraviolet, i.e., large distance 
scales to small distance scales. From this finite win-
dow scale we may bet on two possibilities: i/ that no 
TOE of Physics exists, since as we enlarge the energy 
window we will get new laws of Physics that were not 
anticipated; ii/ that a TOE of Physics do exists and 
from our current window of knowledge, or proba-
bly a better one, we can deduce the whole range of 
physical laws in the entire energy scale, i.e., Physics 
would be finite and closed as a source of knowledge. 
Following Turing’s work, I believe that option i/ is the 
correct one, and experience will tell us. The non-exis-
tence of a TOE in Physics is good news for creativity 
in contrast to reductionism.

http://dx.doi.org/10.3989/arbor.2013.764n6006


ARBOR Vol. 189-764, noviembre-diciembre 2013, a083. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6006

M
iguel-A

ngel M
artin-D

elgado

17

a083

Is it true that true randomness is only quantum? 
The Ω number is a real number whose binary expan-
sion yields bits of information that are true for no rea-
son, they have no structure or pattern, it is incompres-
sible and its bits totally random as Chaitin has shown.

The following question may help to face this outco-
me situation not so dramatically. How can it be that 
Natural Sciences like Physics, Mathematics, etc have 
become so successful if we live in a world plagued by 
intrinsic randomness? A clue to this question is to take 
the example of what type of real numbers are emplo-
yed in successful theories. We will see that we always 
have real numbers like √2, π, e, etc. Although they 
are irrational with an infinite number of decimals, 
we have very short algorithms that generate that se-
ries of decimals very effi ciently. I.e., they are actually 
maximally compressible numbers.

This fact can be extrapolated to the whole structure 
of successful theories of Nature: they are very sim-
ple, they can be compressed, reduced to a simple set 
of axioms or laws of Nature. The rest of the univer-

se that remains unknown is due in part because it is 
not compressible and we live in a small region of the 
whole space of theories or knowledge. We may divide 
our ‘sphere of knowledge’ into three parts: i/ current 
science (known); ii/ future science (to be known); and 
iii/ unknowable or irreducible.

Physicists are willing to find and adopt new physi-
cal principles, laws that expand their knowledge of 
the universe. Mathematicians, standard and formal 
ones, tend to stick rigidly to axioms and not to modify 
them. They should adopt a more experimental attitu-
de. With Turing, the fields of Mathematics and Physics 
become more unified.
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