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RESUMEN: La resolución de sistemas de ecuaciones lineales es 
sin duda el problema más importante en Matemática Aplicada. Es 
importante en sí mismo y también porque es un paso intermedio 
en la resolución de muchos otros problemas de gran relevancia. 
La eliminación Gaussiana es hoy en día el método estándar para 
resolver este problema en un ordenador y, además, fue el primer 
algoritmo numérico para el que se realizó un análisis de errores 
de redondeo. En 1948, Alan Turing publicó un artículo de gran 
relevancia sobre este tema: “Rounding-off errors in matrix pro-
cesses” (Quart. J. Mech. Appl. Math. 1, pp. 287-308). En este ar-
tículo, Turing formuló la eliminación Gaussiana en términos de la 
factorización LU de una matriz e introdujo la noción de número de 
condición de una matriz, que son dos de las nociones más funda-
mentales del Análisis Numérico moderno. Además, Turing presen-
tó un análisis de errores de la eliminación Gaussiana para matrices 
generales que influyó profundamente en el espíritu del análisis de 
errores definitivo desarrollado por Wilkinson en 1961.   El trabajo 
de Alan Turing sobre la eliminación Gaussiana aparece en un  pe-
riodo fascinante del Análisis Numérico moderno. Otros gigantes de 
las matemáticas como John von Neumann, Herman Goldstine y 
Harold Hotelling también realizaron investigaciones sobre la elimi-
nación Gaussiana en la década de 1940-50. El objetivo de estos in-
vestigadores era encontrar un método eficiente y fiable para resol-
ver  sistemas de ecuaciones lineales en los ordenadores modernos 
que estaban desarrollándose por entonces. En aquella época, no 
estaba claro en absoluto si utilizar la eliminación Gaussiana era una 
elección adecuada o no. El propósito de este artículo es revisar, a 
nivel básico, las contribuciones realizadas por Alan Turing y otros 
investigadores al análisis de errores de la eliminación Gaussiana, 
el contexto histórico de esas contribuciones y su influencia en el 
Análisis Numérico moderno.
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ABSTRACT: The solution of a system of linear equations is by 
far the most important problem in Applied Mathematics. It 
is important both in itself and because it is an intermediate 
step in many other important problems. Gaussian elimination 
is nowadays the standard method for solving this problem nu-
merically on a computer and it was the first numerical algo-
rithm to be subjected to rounding error analysis. In 1948, Alan 
Turing published a remarkable paper on this topic: “Rounding-
off errors in matrix processes” (Quart. J. Mech. Appl. Math. 
1, pp. 287-308). In this paper, Turing formulated Gaussian 
elimination as the matrix LU factorization and introduced the 
“condition number of a matrix”, both of them fundamental 
notions of modern Numerical Analysis. In addition, Turing pre-
sented an error analysis of Gaussian elimination for general 
matrices that deeply influenced the spirit of the definitive 
analysis developed by James Wilkinson in 1961. Alan Turing’s 
work on Gaussian elimination appears in a fascinating period 
for modern Numerical Analysis. Other giants of Mathematics, 
as John von Neumann, Herman Goldstine, and Harold Hotel-
ling were also working in the mid-1940s on Gaussian elimi-
nation. The goal of these researchers was to find an efficient 
and reliable method for solving systems of linear equations in 
modern “automatic computers”. At that time, it was not clear 
at all whether Gaussian elimination was a right choice or not. 
The purpose of this paper is to revise, at an introductory level, 
the contributions of Alan Turing and other authors to the er-
ror analysis of Gaussian elimination, the historical context of 
these contributions, and their influence on modern Numerical 
Analysis.
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1. INTRODUCTION

Alan Turing made several contributions that are con-
sidered fundamental in Mathematics and Computer Sci-
ence and that are widely known by all mathematicians 
and computer scientists. Even more, the names of 
some of these contributions are also very well known 
by many educated people (who are not necessarily spe-
cialists) as, for instance, the name Turing Machine or 
the name Enigma. In addition, Alan Turing made oth-
er fundamental contributions that remain almost un-
known for most mathematicians and computer scien-
tists and, of course, completely unknown outside the 
academic world. One of these contributions is Alan 
Turing’s work on the error analysis of the method of 
Gaussian Elimination (GE) for solving systems of lin-
ear equations, which is one of the most important and 
ubiquitous numerical algorithms and, perhaps, the most, 
since it is used by many other numerical algorithms. Cu-
riously enough, basic versions of GE are explained in 
high school courses of Mathematics and, therefore, GE 
is one of the best known algorithms by common peo-
ple, but most professional mathematicians and com-
puter scientists are unaware of its relationship with 
Alan Turing’s scientific contributions.

Many numerical analysts know that Alan Turing was 
one of the first researchers working on the error analysis 
of GE. This is clearly explained in some standard refer-
ences on Numerical Analysis. In particular, an excellent 
text that gives a detailed account on Turing’s contribu-
tions to the analysis of GE is Nicholas Higham’s “Accu-
racy and Stability of Numerical Algorithms” (Higham, 
2002). Not incidentally, Nicholas Higham is “Richard-
son Professor” of Applied Mathematics in the School 
of Mathematics at Alan Turing Building in The University 
of Manchester, precisely the institution where Alan Tur-
ing spent the last part (1948-1954) of his short life, and 
Higham´s book is dedicated to Alan Turing and James 
Wilkinson, who will be another important character 
in our story (see Figure 1). Concerning Alan Turing’s 
work on GE, one can read the following paragraph in 
Higham (2002, pp. 184-185):

“ The experiences of Fox, Huskey, and Wilkin-
son prompted Turing to write a remarkable 
paper “Rounding-off errors in matrix process-
es” (Turing, 1948). In this paper, Turing made 
several important contributions. He formulated 
the LU factorization of a matrix ... showing 
that Gaussian elimination computes an LU fac-
torization. He introduced the term “condition 
number” and defined two matrix condition 
numbers ...  He exploited backward error ideas 
...  Finally, and perhaps most importantly, he 

analysed Gaussian elimination with partial piv-
oting for general matrices and obtained a bound 
for (the error)  . . .”

I am not mentioning above all the contributions 
of Turing listed by N. Higham (2002), but only those 
that I will consider in this manuscript because, in my 
opinion, they are the most interesting for a general 
audience.

Figure 1. (1) Alan Turing (1912-1954) and (2) James 
Wilkinson (1919-1986)

(1)

(2)
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Probably most mathematicians and computer scien-
tists, and certainly most common people, are unaware 
that Alan Turing was not the only great mathemati-
cian working on the error analysis of GE in the 1940’s. 
However, for numerical analysts it is well known that, 
before him, other giants of Mathematics considered 
the error analysis of GE as a very important problem 
and worked on it in the 1940’s. In fact, although Alan 
Turing certainly made a number of key and original 
contributions, some of the results presented in Tur-
ing (1948) were previously known or were closely re-
lated to previous work by other authors. This has been 
pointed out in the complete recent survey “John 
von Neumann’s Analysis of Gaussian Elimination 
and the Origins of Modern Numerical Analysis2 by 
Joseph Grcar (2011b, p. 633), where one can find 
the following:

“Turing coined the name “condition number” 
... for measures of sensitivity of problems to 
error, and the acronym “LU” for the general 
decomposition. Textbooks tend to intimate 
that Turing introduced modern concepts by in-
troducing the modern nomenclature, but the 
history is more complex. Algorithms had been 
described with matrix decompositions before Tu-
ring’s paper ... Measures of sensitivity evolved 
from as early as Wittmeyer in the 1930s ...”

In this context, the main goal of this manuscript is to 
bring to the attention of the “widest as possible” au-
dience the work of Alan Turing on GE and to explain 
why this problem was (“is”) so important in Numerical 
Analysis in particular, and in Mathematics in general. 
For this purpose, I aim to explain at an introductory 
level, accessible to readers with a basic background in 
Mathematics (the level of a last high school course), 
the most important ideas included in Turing (1948) 
and their role in modern Numerical Analysis. I also 
want to briefly describe the fascinating historical pe-
riod in which Alan Turing’s paper (1948) was written 
and published, as well as the work made by other very 
relevant researchers (Hotelling, von Neumann, Golds-
tine, Wilkinson) on the rounding error analysis of GE 
before and after Turing’s paper. I will stress the 
unique spirit of Alan Turing’s approach to the prob-
lem and its influence on modern Numerical Analysis. 
In my opinion, this spirit reflects very well the genius 
of Turing and establishes a difference between his work 
and the work by others. Finally, I will discuss a couple of 
very recent developments on error analysis of GE and 
the main problem still open on this topic.

Before starting, let me say a few words about what 
this paper is not. It is not a rigorous mathematical 
paper, since Numerical Analysis is a branch of Math-

ematics full of technical details that can hide the main 
ideas for non-specialist readers. Therefore, I will omit 
to state many rigorous theorems in the exposition, 
although I will provide references where interested 
readers may find complete information. Moreover, 
this paper is not a work on the History of Mathemat-
ics. After reading with detail Turing’s paper (1948) 
and some recent works on the History of Numerical 
Analysis, I am convinced that Turing’s paper deserves 
to be analysed in depth, both from the point of view 
of Turing’s scientific biography and from the point of 
view of the History of Numerical Analysis. An exten-
sive study in the spirit of the recent paper by Joseph 
Grcar (2011b) on von Neumann’s contribution to GE is 
clearly necessary. However, this would lead to a very 
long paper or to a paper for specialists who already 
know the error analysis of GE and are interested in 
its origins and evolution. Therefore, I have chosen to 
write a paper on modern mathematical results, with 
modern mathematical notation, and where the history 
enters in the form of comments and remarks instead as 
explicit statements of original results from the 1940’s.

The paper is organized as follows. In Section 2, a 
brief history of GE is presented and the classic and 
modern descriptions of GE are refreshed for those 
readers who have forgotten GE or who are not famil-
iar with its modern treatment. Section 3 describes the 
historical context, from the point of view of Mathemat-
ics and Computer Science, in which the paper was pub-
lished. Since the title of Turing (1948) is “Rounding-off 
errors in matrix processes”, it is essential to describe in 
Section 4 in simple terms which are the errors com-
mitted by GE when it is run on a computer. This will 
allow us to understand why this problem is so in-
teresting and difficult and to understand why a com-
plete solution still remains an open problem. The error 
analysis of GE currently accepted was not developed 
in the 1940’s. It was developed by James Wilkinson 
in 1961. Therefore, we discuss in Section 5 some key 
points about what Alan Turing did and did not in Tur-
ing (1948). It is important to note that rounding error 
analysis of GE is still an active area of research and 
some recent works in this area are briefly described 
in Section 6. Finally, some conclusions are presented 
in Section 7.

2. A BRIEF HISTORY AND DESCRIPTION OF GAUSSIAN 
ELIMINATION

Classic books on the History of Mathematics, as 
well as recent studies on this subject, place the ori-

𝖃𝖐𝕾Ꮩ⊔⊂⊃ ∀
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gins of GE in a variety of ancient texts from differ-
ent places and times: China, Greece, Rome, India, 
medieval Arabic countries, and European Renaissance. 
However, in my opinion, it is not exact to say that these 
ancient/medieval/renaissance texts describe what we 
understand today as the method of GE, since these 
texts mainly present some specific problems that are 
solved in a way that fits in what today is accepted as 
GE, but they do not include any explicit statement of 
the set of rules that constitute the method of GE. In 
this context, I refer the reader to the excellent recent 
papers by Grcar (2011a y 2011c) for a detailed ac-
count of the History of GE (including many interesting 
technical details) and of the researchers who contrib-
uted to its development. Here, for the sake of brevity 
and simplicity, I will only highlight the most important 
contributions and contributors.

The developments of GE that include explicit 
statements of algorithmic rules can be organized 
essentially in three periods (Grcar, 2011c) that 
are called the schoolbook elimination period, the 
professional elimination period, and the modern 
elimination period.

The schoolbook elimination period corresponds to 
the development of GE essentially as it is presented 
in current high school textbooks. This period started 

with Isaac Newton (see Figure 2), who lectured on 
Algebra as it appeared in Renaissance texts while work-
ing for his promotion to the Lucasian professorship. In 
1669-1670 Newton wrote some notes where he estab-
lished the systematic rules for solving systems of linear 
equations via the extermination (today elimination) 
method (Grcar, 2011a). Taking into account Newton’s 
extremely powerful and systematic mind, I conjecture 
that he was not satisfied with the unsystematic way in 
which Renaissance Algebra texts described the solu-
tion of linear systems of equations and that this mo-
tivated him to write his notes. These notes remained 
unpublished until they were published in Latin in 1707 
and in English in 1720. The clarity of these notes, as 
well as the immense prestige of Newton, led to many 
Algebra textbooks in the eighteenth century present-
ing the solution of systems of linear equations by fol-
lowing essentially Newton’s rules. We only mention 
here the very well-presented text “Element d’algèbre“ 
(Paris, 5th ed., 1804) by Sylvestre Lacroix, where the 
modern word elimination was used for the first time 
instead of extermination.

The way GE is presented in high school textbooks is 
highly inefficient for solving moderately large systems 
of linear equations via hand computations. This was 
not a problem for some time, because large systems 

Figure 2: Isaac Newton established first the rules of Gaussian elimination as they are still presented in current high 
school textbooks. Carl Friedrich Gauss developed efficient methods for solving normal equations, i.e., the special 
type of linear systems arising in the solution of least squares problems, via Gaussian elimination.

school

Isaac Newton (1643-1727) Carl Friedrich Gauss (1777-1855)
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of linear equations did not arise in relevant real-world 
applications. This abruptly changed with the inven-
tion of the method of least squares by Adrien-Marie 
Legrendre (1805) and Carl Friedrich Gauss (1809) (or 
by Gauss and Legendre in reverse order!) at the be-
ginning of the nineteenth century.

The method of least squares answered the question 
of how to make accurate predictions from measure-
ments with errors, a question that was motivated by 
practical measurements in astronomy and, more impor-
tant in real-life applications, by geodetic research for 
cartography, an activity that was generously funded 
by governments in the nineteenth century. The least 
squares method finds a minimum of a certain quad-
ratic function of many variables, but the important 
point for our story is that this minimum is the so-
lution of a linear system of equations that are called 
normal equations. These systems of equations are very 
particular since, in modern nomenclature, their coef-
ficient matrices are symmetric and positive definite. 
At the time of Gauss, normal equations might have as 
much as 20 equations and 20 unknowns and this was 
a formidable task for professional human computers if 
the elimination method was applied as described by 
Newton to compute the solution.

These difficulties motivated Gauss to modify the 
high school elimination method of Newton in a non-
trivial way and this is the start of the professional 
elimination period of GE. The details are too tech-
nical to be explained here (see Grcar, 2011a), but the 
key point of Gauss’s method is to avoid writing sym-
bolic algebraic equations and unknowns. By the use 
of a clever notation, Gauss computations were stored 
in lists of numbers. In addition, he halved the number 
of arithmetic operations needed with respect the high 
school elimination method by taking into account the 
symmetry of normal equations. Gauss’s method does 
not superficially resemble either high school elimina-
tion method or modern GE, but it was very important 
from the point of view of applications and it became 
part of the syllabus of geodesists, cartographers, and 
military engineers.

Gauss’s method was significantly improved by 
Myrick Doolittle (1881), André-Louis Cholesky 
(1924), who adapted it for being used with mechani-
cal multiplying calculators, and Prescott Durand 
Grout (1941), who developed a method valid for 
general systems of equations and not only for nor-
mal equations. This essentially closes the profession-
al elimination period of GE, since modern computers 
came into scene in the next few years.

The modern elimination period of GE started in 
1947 with the key paper by John von Neumann 
and Herman Goldstine (1947), and continued one 
year later with the paper by Alan Turing (1948), that 
motivates this manuscript. These authors consid-
ered implementations of GE with the aim of being 
used on digital, electronic, and programmable com-
puters, i.e., modern computers. The motivation was 
not just to get an efficient implementation, but also 
a guaranteed and reliable implementation from the 
point of view of the rounding errors committed by 
modern computers. This required the development both 
of algorithmic improvements and of error analyses of 
GE. The interest on error analysis represents a funda-
mental difference with respect the activity in previous 
periods. The definitive error analysis of GE accepted 
today was presented by James Wilkinson (1961). The 
contents of the references mentioned in this para-
graph will be described in more detail in next sections.

It is important to observe that, since the 1940’s, 
the research on different aspects of GE has remained, 
and still remains, very active. The interested reader 
is invited to consult the wide collection of references 
included in Higham (2002, Chapters 8-14), as well 
as, the recent, complete, and easy-to-read review by 
Higham (2011). It may be also interesting to know that 
during the early stages of the modern elimination 
period GE took the name “Gaussian” (before, it was 
known simply as the “elimination method”), apparently 
as a consequence of misattributing high school elimina-
tion to Gauss instead of Newton. More precisely, Tur-
ing writes “...Gauss’s elimination method. This is the 
method almost universally taught in schools...” in the 
first page of Turing (1948) and it seems that George 
Forsythe was the first to call it “Gaussian elimination” 
in 1953 (Grcar, 2011a; Grcar, 2011c).

2.1. Refreshing Gaussian elimination from high 
school with Newton

In this section, I refresh the method of GE as it ap-
pears in high school textbooks via an example. Later, 
I will use the same example to illustrate how modern 
GE is presented in Numerical Analysis textbooks at 
the University-level. So, I propose that readers to im-
agine themselves to be young again, living the good 
times of high school, and, to make this exercise even 
more exciting, that they imagine that Newton is their 
teacher!

Consider that we are asked to solve the following 
system of equations. 
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The key point of Gaussian elimination is to elimi-
nate unknowns from certain equations. For describ-
ing the method of GE in a precise way, we number 
the equations in (1) from top to bottom, i.e., the 
top equation is equation(1) and the bottom equa-
tion is equation(4). In a first stage, we eliminate x1 
in all equations below the first one via the follow-
ing replacement operations: replace “equation(2)” 
by “equation(2) – (–2)×equation(1)”; replace “equa-
tion(3)” by “equation(3) – 3×equation(1)’’; and replace 
“equation(4)” by “equation(4) – 1×equation(1)”. So, 
we obtain the linear system

Next, we perform the second stage, where we elimi-
nate x2 in all equations below the second one via the 
replacement operations: replace, “equation(3)” by 
“equation(3) – (–4)×equation(2)”; and replace, “equa-
tion(4)” by “equation(4) – 2×equation(2)”. So, we ob-
tain the linear system

Finally, we perform the third stage, where we elimi-
nate x3 in all equations below the third one via the 
replacement operation: replace “equation(4)” by 
“equation(4) – (–7)×equation(3)”. This leads to the 
following upper triangular linear system

This is the end of the GE process that has trans-
formed the linear system (1), which we did not know 
how to solve, into the linear system (2), which has the 
same solution and that can be solved very easily: from 

equation(4) we compute x4; next from equation(3) we 
compute x3; next from equation(2) we compute x2; 
and, finally, from equation(1) we compute x1. This 
procedure of solving (2) is known as backward sub-
stitution, and it computes the following solution: 

The process above can be easily generalized to sys-
tems with any number of equations and unknowns.

The linear system (1) has some key features that 
ought to be mentioned. First note that (1) has the 
same numbers of equations as unknowns and that 
its solution is unique. In more advanced mathemati-
cal language, this is equivalent to say that the coeffi-
cient matrix of (1) is nonsingular. This is the only case 
in which GE is used on modern computers and is the 
only case that is considered in this paper3. Probably, 
many readers recall from their high school days that 
GE was also used for linear systems with any number 
of equations and unknowns for determining whether 
they have solution or not, and/or, in the case they 
have, to find a parametric description of the infinite 
number of solutions. However, in these cases, GE 
is not reliable from a numerical point of view and 
other methods are used in actual numerical compu-
tations (Demmel, 1997; Golub and van Loan, 1996; 
Trefethen and Ban, 1997).

Another feature of (1) is that GE has run without 
interchanging equations. Interchanges of equations 
are needed, for instance, if after the second stage 
x3 does not appear in equation(3). I will discuss 
later how equations are interchanged when GE is 
currently implemented on computers. Finally, the 
readers might recall that at high school they used, 
in addition to replacement and interchange opera-
tions, scaling of equations, i.e., to multiply an equa-
tion by a nonzero number. Scaling operations are 
never used in modern GE.

I am almost sure that most readers, apart from many 
happy memories in high school, have also recalled that 
to perform GE by hand is a long and boring process and 
that it is easy to make mistakes that spoil the whole 
solution. An important point to be noted is that, al-
though GE, as explained by Newton, is very efficient 
from the point of view of the number of arithmetic 
operations, it is necessary to write several systems of 
equations. In our toy example (1), we have written just 
4, but for solving a system of 20 equations with 20 un-

(1)

(2)

(3)
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knowns, we should write 20 large systems! This makes 
Newton’s high school elimination very inefficient for 
solving large systems and motivated Gauss to devel-
oped his nontrivial professional elimination meth-
od. We will skip the description of this procedure 
and move directly to the description of modern GE.

2.2. From high school to modern GE: the LU Matrix 
Factorization

The most important mathematical concept of mod-
ern GE is the LU matrix factorization. It allows us to 
state in a compact and elegant matrix language the GE 
method described above, it plays an important role in 
the implementation of GE in modern computers, and, 
finally, it is essential to facilitate the rounding error 
analysis of the algorithm. To explain the LU factori-
zation, we use again the linear system (1). To begin 
with, let us write (1) in matrix notation as

The matrix A is called the coefficient matrix of sys-
tem (1), x the unknown vector, and b the vector of 
independent terms (since it does not depend on the 
unknowns). The replacement operations for equa-
tions that were performed for transforming (1) into 
the upper triangular system (2) can be translated into 
replacement operations for rows of the matrix A 
and by applying them

where U is the coefficient matrix of the system (2). 
Note that, at the moment, we are not paying atten-
tion to the vector b in (4). Let us collect the infor-
mation in the paragraphs after (1) and list the row 
replacement operations applied in (5). 

 

The numbers –2, 3, 1, –4, 2, and –7 that multiply 
rows in each row replacement operation in (6) are 
called the multipliers of GE and our next step is to 

store them in a 4 x 4 matrix L. The entries where 
they are stored are easily determined by the two 
rows involved in each replacement operation in (6): 
–2 is stored in the entry (2, 1), 3 is stored in the en-
try (3, 1), 1 is stored in the entry (4, 1), and so on. 
Clearly, the multipliers only fill the entries below the 
diagonal of L. The remaining entries are defined as 
follows: all diagonal entries are set equal to one and 
all entries above the diagonal are set equal to zero. 
In this way we get

So far, the matrix L is nothing else that a table 
where the multipliers of GE are stored, but from (5) 
and (7), the reader may check that the following mir-
acle happens!! 

which is the very famous LU factorization of the ma-
trix A. This factorization expresses A as a product of 
a lower triangular matrix L with 1’s on the diagonal 
times an upper triangular matrix U. The LU factoriza-
tion exists for almost all matrices and was introduced 
by von Neumann and Goldstine in 1947 in their cel-
ebrated paper. It was also considered later by Turing 
(1948), where its current name LU was introduced. 
Here L stands for “lower” (triangular) and U for “up-
per” (triangular). Turing also stated the condition for 
the existence and uniqueness of the LU factorization 
in terms of the nonsingularity of the leading principal 
minors of A (Turing, 1948, p. 289), as it is still stated 
today in standard texts on matrix computations (Dem-
mel, 1997; Golub and van Loan, 1996; Higham, 2002).

I would like to mention that we have constructed 
(8) via the multipliers of GE and the final matrix U ob-
tained by the GE method. Conversely, if a matrix A is 
constructed as a product of an arbitrary lower trian-
gular matrix L with 1’s on the diagonal times an arbi-
trary upper triangular matrix U, then the multipliers 
of GE applied on A are the lower triangular entries of 
L and U is the final matrix obtained by GE.

The LU factorization is not the only factorization of 
a matrix involving triangular factors that is important in 
Numerical Analysis. In fact, accurate and efficient al-
gorithms for computing different triangular factoriza-
tions of matrices were considered among the top ten 

(4)

(5)

(6)

(7)

(8)
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algorithms of the twentieth century (Dongarra and 
Sullivan, 2000), since they are widely used in the nu-
merical solution of many applied problems.

2.3. Modern GE: Solving linear systems via the LU 
factorization

Nowadays, the solution of a linear system Ax = b, 
where A is an n x n matrix, via the LU factorization is 
performed in three steps:

1. Compute the LU factorization of A: A= LU.

2. Solve for y the lower triangular linear system 
Ly =b by forward substitution, i.e., start by comput-
ing the first unknown y1 = b1 from the first equation, 
then use y1 to compute the second unknown y2 from 
the second equation, then use y1, y2 to compute the 
third unknown y3 from the third equation, and so on.

3. Solve for x the upper triangular linear system 
Ux = y by backward substitution as in (3).

It is easy to see that these steps compute the solu-
tion, because if we substitute y from the third step 
into the equation in the second step, then we get 
L(Ux) = b, which is Ax = b. This three-step approach 
was suggested first by Turing (1948, p. 291), together 
with several other approaches for solving Ax = b. 
However, it is interesting to mention that Turing did 
not identify the three-step approach as preferred over 
other options. Today, it is widely recognized that the 
three-step approach has several important advantag-
es such as, for instance that it allows us to solve very 
easily, and almost without extra computational cost, 
other linear systems Ax = b’ with the same coefficient 
matrix but different right-hand sides (a common situ-
ation in applications), and that it considerably simpli-
fies the rounding error analysis of solving Ax = b on 
a computer.

Explicit algorithms for solving the triangular sys-
tems Ly = b and Ux = y appearing in the three-
step approach can be written very easily and are not 
discussed here (see the standard references Demmel, 
1997; Golub and van Loan, 1996; Higham, 2002). How-
ever, the computation of the LU factorization of A de-
serves some comments. The first one is that it is only 
needed to store the strictly lower triangular part of L, 
i.e., the entries below the diagonal, since the remain-
ing entries are known to be zeros below or ones on 
the diagonal. Analogously, it is only needed to store 
the upper triangular part of U, i.e., the entries above 
and on the diagonal. Therefore, the nontrivial parts of 
L and U fit into the original matrix A and this saves 

storage requirements in computers and allows us to 
write the elegant and simple Algorithm 1 for comput-
ing the LU factorization of a matrix. I do not pretend 
at this level that average readers understand Algorithm 
1. It is not difficult, but it requires some work and famili-
arity with programming matrix algorithms (see Dem-
mel, 1997; Golub and van Loan, 1996; Higham, 2002). 
However, please take my word for it. This simple algo-
rithm does really compute the LU factorization! Also, 
please look closely at Algorithm 1 before reading my 
comments below.

Observe that Algorithm 1 consists only of two lines 
of arithmetic operations and three for-loops. Its sim-
plicity is fascinating, particularly when it is compared 
with the long explanation process that is required to 
present GE and the construction of the LU factoriza-
tion in most textbooks. Although it may not be obvi-
ous, note that the outer for-loop of Algorithm 1 corre-
sponds to the “stages” of GE, i.e., the k-th step in the 
loop corresponds to the operations needed to elimi-
nate (to set to zero) all entries below the diagonal in 
the kth column.

The computational cost of Algorithm 1 is 2n3/3 + 
0(n2) arithmetic operations and this is also the cost of 
the three-step approach for solving Ax = b, since the 
solution of the triangular systems Ly = b and Ux = y 
costs 2n2 – n arithmetic operations.

2.4. Modern GE: Partial pivoting

Algorithm 1 may produce huge errors when it is 
implemented on a computer if a very small pivot akk 
appears in some kth stage4, k = 1, 2, ... , n – 1. In 
actual computational practice, it is necessary to 
permute the rows of the matrix A (equivalently, the 
equations of the system Ax = b) for obtaining a re-
liable algorithm. The permutations are performed 
“on line” as GE proceeds and several permutation 
(or pivoting) strategies are described in textbooks on 
Numerical Linear Algebra (Demmel, 1997; Golub and 
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van Loan, 1996; Higham, 2002). However, only one of 
these strategies is universally adopted in professional 
software for solving linear systems. This is the partial 
pivoting strategy.

For describing partial pivoting, it is convenient to 
introduce some additional notation. Let us define the 
matrices A(1) := A, A(k) as the matrix produced by GE 
at the start of the kth stage for k = 2, ... , n – 1, and 
A(n) := U as the upper triangular U factor obtained at 
the end of GE. The entries of A(k) are denoted by aij

(k), 
as usual. Recall that the kth stage of GE sets to zero the 
entries below the diagonal in the kth column. Partial 
pivoting interchanges at the start of the kth stage the 
kth and rth rows, where

and after that an standard kth stage of GE is per-
formed. To understand better how partial pivoting pro-
ceeds, let us apply it to the matrix A = A(1) in (4). Note 
that the entry with largest absolute value in the first 
column of A(1) is 6 in position (3, 1). Then partial pivot-
ing exchanges rows 1 and 3 and after that the replace-
ment operations “row(2) → row(2) –(–2/3)×row(1)”, 
“row(3) → row(3) –(1/3)×row(1)”, and “row(4) → 
row(4) –(1/3)×row(1)” are performed to obtain A(2). 
This is summarized in the following equation:

Next, observe that the entry with largest absolute 
value in the second column of A(2) on and below the 
diagonal is –10 in position (4, 2). Then partial pivoting 
exchanges rows 2 and 4 and after that the replace-
ment operations “row(3) → row(3) –(2/5)×row(2)” 
and “row(4) → row(4)  –(–1/2)×row(2)” are per-
formed to obtain A(3). This is summarized in the fol-
lowing equation:

Next observe that the entry with largest absolute 
value in the third column of A(3) on and below the 
diagonal is –12 in position (4, 3). Then partial pivot-
ing exchanges rows 3 and 4 and after that the re-
placement operation “row(4) → row(4) –(–13/15) 
×row(3)” is performed to obtain the upper triangular 
matrix A(4)=: UP , and the process of GE with partial 
pivoting finishes. This is summarized in the following 
equation:

Once the row exchanges that have been done by par-
tial pivoting are known, it is clear that the process is 
mathematically equivalent to permute A in advance 
accordingly and then to perform GE without any pivot-
ing. Therefore GE with partial pivoting computes an LU 
factorization of a matrix PA = LPUP that is obtained 
by exchanging rows 1 and 3 of A, after that rows 2 and 
4, and, finally rows 3 and 4. We already know the ma-
trix UP and I propose the reader to deduce from the 
replacement operations performed above and taking 
into account the row interchanges the lower triangular 
factor LP . The final factorization is

The comparison of the LU factorization of PA in 
(9) with the one of the original matrix A in (8)–(7)–
(5) reveals that row permutations in A induce drastic 
changes in the LU factors: L and LP are very differ-
ent, as well as U and UP . This is an indicator of why 
rounding errors in GE depend deeply on the pivoting 
strategy and why the error analysis of GE is extreme-
ly difficult. A key observation is that all entries of LP 
coming from partial pivoting have absolute values less 
than or equal to 1, while this does not happen for L. 
This property is of fundamental importance and read-
ers can find more information about it in Demmel 
(1997), Golub and van Loan (1996), Higham (2002).

Partial pivoting can be easily and elegantly incorpo-
rated in Algorithm 1. The details are omitted, but can 
be found in Demmel (1997), Golub and van Loan (1996), 
Higham (2002). Partial pivoting allows us to write the 
definitive algorithm of modern Gaussian elimination.

Algorithm 2 (Modern Gaussian Elimination)

Input: A matrix of size n x n and b vector of size n x 1
Output: Solution of linear system Ax = b given as vector 

x of size n x 1

1. Compute the LU factorization of A with partial pivoting: 
PA = LU.

2. Solve for y the lower triangular system Ly = Pb by 
forward substitution.

3. Solve for x the upper triangular system Ux = y by 
backward substitution.

(9)
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The term “partial pivoting” was introduced by Wilkin-
son (1961), but pivoting techniques were in use in the 
1940s and it is not clear who can be said to have in-
vented them.

3. HISTORICAL CONTEXT OF ALAN TURING’S PAPER 
ON ROUNDING ERRORS

In the 1940s there were three very famous papers 
giving error analyses of GE. The first one was written by 
Harold Hotelling in 1943; the second one was written by 
John von Neumann and Herman Goldstine in 1947; and 
the third one is the paper published by Alan Turing in 
1948. There were, of course, other papers published in 
the 1940’s on the same subject, but they have had much 
less influence than the three papers mentioned above 
and, therefore, are not considered in this work. Among 
the three papers (Hotelling, 1943; von Neumann and 
Goldstine, 1947; Turing, 1948), the one by Von Neumann 
and Goldstine in the best known and, without any doubt, 
the most influential. It is a key paper that has been con-
sidered by several top numerical analysts as the first 
paper of modern Numerical Analysis, where “modern” 
has here the sense, already used before, of “analyzing 
methods to be used on digital, electronic, programma-
ble computers”. More information on von Neumann and 
Goldstine (1947) can be found in Grcar (2011b) and in 
Wilkinson (1971a).

The three papers were written before modern 
computers existed, but they were motivated by the 
existence of several projects for constructing the first 
“modern computers” in United Kingdom and USA. In 
this work, as usual, the term “modern computer” 
should be understood as a “digital, electronic, and 
programmable computer”. To fully realize the context 
in the 1940s with respect numerical computations, 
we can imagine ourselves as researchers in the 1940s. 
Then, it would be clear for us that modern computers 
would come very soon and that they would offer a huge 
power of computation compared with that of available 
desk electro-mechanical calculators. For taking advan-
tage of this “computational giant step”, a key question 
would be to determine whether the numerical meth-
ods used in the 1940s and before would be accurate 
and efficient on modern computers or not. For those 
problems where a negative answer was obtained, 
new methods had to be developed.

In the 1940s, as well as today, one of the most 
important numerical problems was the solution 
of “large” (the precise meaning of “large” changes 
continuously with time) systems of linear equations, 
since they appear in many applications. In addition, 
in Turing’s own words (1948, p. 287), “The best 
known method for the solution of linear equations 

is Gauss’s elimination method. This is the method 
almost universally taught in schools.” Therefore, we 
can see as very natural for a researcher in the 1940s 
to study GE from a new perspective: its practical 
use on modern computers.

The paper by Hotelling (1943) was mainly moti-
vated by applications in Statistics. GE was consid-
ered in pages 6-7, where Hotelling presented a very 
simple error analysis that produces an error bound that 
increases exponentially with the number of equations 
n, more precisely, it increases as 4n-1. This error bound 
led Hotelling (1943, pp. 7-8) to state: “The rapidity 
with which this increases with n is a caution against 
relying on the results of ... elimination methods ... 
when the number of equations and unknowns is 
at all large.” and “There is here a distinct need of 
using an iterative process ...”

Hotelling’s results led to general pessimism in mid 
1940s about the practical use of GE for solving large 
systems of equations and motivated the papers by von 
Neumann and Goldstine (1947) and by Turing (1948). 
In particular we can read in the first page of Tur-
ing’s paper: “(GE) has, unfortunately, recently come 
into disrepute on the ground that rounding off will 
give rise to very large errors. It has, for instance, 
been argued by Hotelling (ref. 5) that in solving a 
set of n equations we should keep nlog104 extra or 
“guarding” figures.” A key point of this discussion 
is to realize that during a period of five years GE was 
almost discarded as a reliable method for solving lin-
ear systems of equations in modern computers and, as a 
consequence, that several other methods were actively 
investigated. In addition, note that the cause of this 
situation was the absence of an adequate rounding er-
ror analysis of GE guaranteeing good error bounds for 
the computed solution, but that GE was accepted in 
the 1940s to be very efficient with respect the number 
of needed arithmetic operations. The technical disci-
pline, often considered boring and too specialized in 
the 21st century, of rounding error analysis came on 
to the scene as a lead actor, and it was essentially 
created in the 1940s for solving the GE problem.

The error analyses developed by von Neumann and 
Goldstine (1947) and by Turing (1948) are much more 
sophisticated than the one by Hotelling and they re-
stored the confidence on GE. However, it should be 
remarked that none of these papers solved satisfacto-
rily the problem of the error analysis of GE: this prob-
lem was too formidable even for geniuses such as von 
Neumann and Turing, two of the greatest mathemati-
cians in history, who are famous for solving some of 
the hardest problems in the History of Mathematics. 
This difficulty in the analysis is in stark contrast with 
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the fact that GE is a very simple algorithm taught at 
high school level. The error analysis of GE accepted 
nowadays came much later, in 1961, with the pioneer 
work by James Wilkinson (1961) and it will be dis-
cussed with detail in Subsection 4.3. However, a com-
plete rigorous solution of the problem of the rounding 
error analysis of GE remains as one of the major un-
solved problems in Numerical Analysis, and its precise 
formulation will be discussed in Subsection 4.4.

The results in von Neumann and Goldstine (1947) 
deserve a few words. The long, difficult, and rigor-
ous error analysis by von Neumann and Goldstine is 
not general because it is only valid for systems of the 
type Ax = b where the matrix A is positive definite. 
This covers the important case of the normal equations 
arising in least squares problems5, but not many other 
linear systems that are important in applications. Af-
ter developing a theory of GE and LU factorization for 
general matrices A, von Neumann and Goldstine hon-
estly recognize at the beginning of Section 5.1 in von 
Neumann and Goldstine (1947) that they are unable to 
perform a general rounding error analysis and they limit 
their analysis to positive definite matrices. We quote 
from von Neumann and Goldstine (1947, p. 1056): 
“We have not so far been able to obtain satisfactory 
error estimates for the pseudo-operational equiva-
lent of the elimination method in its general form, 
... We did, however, succeed in securing everything 
that is needed in the special case of a definite A“.

In contrast, Turing (1948) considered the error analy-
sis of GE in the general case. Facing a problem that von 
Neumann could not solve is a very strong indicator of 
Turing’s great courage, self-confidence, and unbounded 
ambition as a researcher. However, the analysis done 
by Turing has some important drawbacks, although his 
conclusions on the errors committed by GE with par-
tial pivoting and its practical use on modern comput-
ers still remain valid today. These questions will be 
further discussed in Section 5.

Next, two additional points on the three papers 
are discussed. The three papers (Hotelling, 1943; von 
Neumann and Goldstine, 1947; Turing, 1948) were 
written by top researchers, who considered the problem 
very important from an applied point of view, but also, 
from a fundamental point of view, since GE was the first 
algorithm to be subjected to rounding error analysis and 
the fundamentals of rounding error analysis had to be 
established for the first time. This is especially evident in 
the paper by von Neumann and Goldstine that spends 
19 pages establishing the sources of errors in compu-
tations and the rules to perform rounding error analy-
ses of algorithms running on modern computers.

3.1. A few words on the authors of the three papers

I will not explain in detail the mathematical contri-
butions of John von Neumann (see Figure 3) and Alan 
Turing (see Figure 1), since both are very well-known 
and are considered as two of the most important 
mathematicians in history. Jean Dieudonné (1981) 
wrote that John von Neumann has been “the last of 
great mathematicians”, as a consequence of the large 
number of different fields where von Neumann made 
major contributions. These fields include, among oth-
ers, set theory, functional analysis, numerical analysis, 
quantum mechanics, game theory, and computer sci-
ence. In fact, von Neumann was a founder of some of 
these fields as, for instance, game theory and com-
puter science. Alan Turing made also fundamental 
contributions in several areas. He solved the famous 
“decision problem” posed by David Hilbert in 1928 via 
the invention of Turing’s machines. In addition, Turing 
was one of the founders of modern cryptanalysis, of 
computers science, of artificial intelligence, of mod-
ern numerical analysis, and of mathematical biology. 
The definitive source of information about Turing’s 
life and contributions is the monumental biography 
by Andrew Hodges (2012).

Harold Hotelling and Herman Goldstine (see Figure 
3), the other authors of the three papers, were also 
top researchers in their day, although not of the same 
level as von Neumann and Turing. Hotelling was born 
in Minnesota in 1895. He was a mathematical statistician 
and an influential economic theorist. He held positions in 
prestigious institutions as Stanford University (1927-31), 
Columbia University (1931-46), and finally he became 
Professor of Mathematical Statistics at the Univer-
sity of North Carolina at Chapel-Hill (1946-1973). He 
received the North Carolina Award for contributions 
to science in 1972 and a street in Chapel Hill bears 
his name. He is widely known to statisticians because 
he introduced the Hotelling T-square distribution and, 
more importantly, the canonical correlation or princi-
pal component analysis, which is a fundamental tech-
nique in statistics.

Herman Goldstine was born in Chicago in 1913. He 
was awarded bachelor (1933), master (1934) and PhD 
(1936) degrees in mathematics from the University 
of Chicago. In 1941 he wrote the technical descrip-
tion for ENIAC (Electronic Numerical Integrator And 
Computer), which was the first electronic computer 
starting to work in 1946 (up to 1955). He joined the 
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Army in 1942, when the United States entered World 
War II and he persuaded the Army to fund the con-
struction of ENIAC in 1943 and subsequently became 
programme manager of ENIAC. Although ENIAC was 
thousands of times faster than previously available 
electro-mechanical machines and was programmable, 
there was no way to issue orders at electronic speed 
(modern programs)6 and ENIAC had to be configured 
with patch cords and rotary switches for each task. 
Therefore, the need for ENIAC’s successor was evi-
dent even before ENIAC was completed and this moti-
vated a contribution that was indirect, but extremely 
important for the history of computer science and GE, 
by Goldstine: In 1944 Goldstine involved von Neu-
mann in planning ENIAC’s successor and this resulted 
in the famous von Neumann’s 1945 report “First draft 
of a report on the EDVAC” on how to build a modern 
computer (available in Aspray and Burks, 1987), and 
in a long and fruitful collaboration between Goldstine 
and von Neumann. Goldstine was awarded the USA 
National Medal of Science in 1985.

An additional information may be of interest for 
readers on the fascinating 1940’s: It is often said 
that von Neumann’s famous report “First draft of 
a report on the EDVAC”, together with Turing’s also 
famous 1946 report “Proposed Electronic Calcula-
tor” (available in Carpenter and Doran, 1986) are 
the foundational documents of computer architec-
ture and that most of the ideas stated in them still 
remain valid today.

3.2. Turing’s and von Neumann’s projects for 
building modern computers

Many projects for constructing modern computers 
got underway in the 1940s. A brief account of them 
may be found in Grcar (2011b) and a complete his-
tory in Rojas and Hashagen (2000). Here, I will say 
just a few words on the projects in which Alan Turing 
and John von Neumann were involved, because at that 
time they simultaneously became interested in the error 
analysis of GE. This stresses further the fact that the 
research on rounding error analysis of GE is motivat-
ed by applications and runs parallel with the develop-
ment of modern computers.

Turing was involved in the NPL Pilot ACE (National 
Physical Laboratory Pilot Automatic Computing En-
gine) project developed in Teddington, England. Tur-
ing worked at NPL from 1945 to 1948 and during this 
period he also worked in rounding error analysis of 
GE. Basically, Turing did the first design of Pilot ACE 
in 1946 which was, probably, very ambitious for the 
resources of NPL and was never constructed. The Pi-
lot ACE started to work in May 1950, without Turing, 
based mainly on ideas of Harry Huskey and James 
Wilkinson (see more comments in Wilkinson, 1971b).

Turing moved to The University of Manchester in 
September 1948. There, he collaborated in the Baby/
Mark 1 project. The Small-Scale Experimental Ma-
chine, known as the ‘Baby”, made its first successful 
run of a program on June 21st 1948. It was the first 

Figure 3: John von Neumann and Herman Goldstine were the authors of “Numerical inverting of matrices of 
high order” in 1947, often considered as the first paper of modern Numerical Analysis. Harold Hotelling was an 
influential statistician who introduced principal component analysis, among other contributions. In 1943, he did an 
error analysis of GE which led to general pessimism about its practical use in modern computers.

John von Neumann (1903-1957) Herman Goldstine (1913-2004) Harold Hotelling (1895-1973)
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machine that had all the components now regarded as 
characteristic of a modern computer. Most important-
ly it was the first computer that could store not only 
data but any user program in electronic memory and 
process it at electronic speed. From the ‘Baby” a full-
sized machine was designed and built, the Manchester 
Mark 1, which by April 1949 was generally available for 
computation in scientific research in the University of 
Manchester. Turing worked in the project and helped 
to design the program language of the computer.

Von Neumann started to lead the computer project 
at the Institute of Advanced Studies at Princeton (USA) 
(the “IAS computer project”) in 1946 and Goldstine 
joined him from the very beginning. In this period they 
became interested in rounding errors in GE. The first 
IAS computer started to work in 1951, i.e., later than 
its UK competitors. However, its influence on modern 
computers is, probably, more important, since several 
clones of the IAS computer were built from 1952 to 
1957, including the first IBM mainframe.

4. ROUNDING ERROR BOUNDS FOR GAUSSIAN	  
ELIMINATION

After explaining the history of GE and its particular 
historical context in the 1940’s, now the key properties 
of the rounding errors committed by GE are considered. 
This is the most technical section of the paper and “for 
encouraging” the reader, I will start with a quotation 
from the Preface of one of the most popular textbooks 
on Numerical Linear Algebra, written by Lloyd N. 
Trefethen and David Ban (1997):

“... We have departed from the customary by not 
starting with Gaussian elimination. That algorithm 
is atypical of Numerical Linear Algebra, exception-
ally difficult to analyze, yet at the same time tedi-
ously familiar to every student...”

In plain words, this means that GE is recognized by 
professional numerical analysts as very easy to ex-
plain, but very difficult to analyse. Therefore, I am 
asking the reader an extra effort for understanding 
its analysis!

4.1 The axioms of rounding error analysis

Rounding errors in computers come from two facts. 
First, computers can only represent a finite subset of the 
real numbers, which is called the set of floating point 
numbers, and is usually denoted by 𝔽. This fact alone, 
obviously, produces errors when storing the data of any 
problem on the computer. Second, 𝔽 is not closed un-
der the basic arithmetic operations (+, –, x, /), however 

when these operations are performed on a computer, 
they must give another number of 𝔽, and this fact pro-
duces further errors. These two facts are encapsulated 
into the axioms of rounding error analysis, that can be 
found in many textbooks (Demmel, 1997; Golub and van 
Loan, 1996; Higham, 2002; Trefethen and Ban, 1997). 
These axioms are:

Axiom 1 (Rounding) If x � ℝ lies in the range of 𝔽, then x is 
approximated by a number fl(x) � 𝔽 such that

fl(x) – x (1 + δ),     |δ| ≤ u,

where u is the unit roundoff of the computer.

In current computers u = 2–53 ≈ 1.11 x 10–16 in double 
precision and u = 2–24 ≈ 5.96 x 10–8 in single precision. 
In Axiom 1, the exact meaning of the sentence “x � ℝ 
lies in the range of 𝔽” is that the absolute value of x 
is smaller than or equal to the largest absolute value 
of the numbers in 𝔽 and larger than or equal to the 
smallest absolute value of the nonzero numbers in 𝔽.

Axiom 2 (Floating Point Arithmetic) If x, y � 𝔽 and op � {+, –, 
x, / }, then

computed (x op y) = (x op y) (1 + α),    |α| ≤ u,

where (x op y) is the exact result of the operation, that may not be 
in 𝔽, and computed (x op y) is the result produced by the computer.

Axiom 2 is sometimes called the “exact-round prin-
ciple” and, in plain words, it can be stated as “comput-
ers should be thought of as performing each arithmetic 
operation exactly and then rounding to a floating point 
number”. The reader should note the key role that the 
unit roundoff u plays in Axioms 1 and 2. All algorithms 
are combinations of (many) basic {+, –, x, /} operations 
and the idea of rounding error analysis is to combine via 
the axioms above the errors in all these operations to 
produce a final relative error in the computed magni-
tude. In most cases, only the first order term in u of the 
relative error is necessary and this makes the analyses 
much simpler. So, in this paper, we will restrict ourselves 
to stating first order rounding error bounds.

From a historical point of view, it should be noted that Ax-
ioms 1 and 2 of floating point arithmetic were introduced 
by Wilkinson in 1960, but that the original idea of establish-
ing simple axioms for rounding error analysis goes back to 
von Neumann and Goldstine in their 1947 paper, where 
they introduced corresponding axioms for the fixed point 
arithmetic used in the 1940s. The error analysis in Turing’s 
1948-paper does not include axioms for rounding errors 
and, in this sense, is very far from current error analyses.
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4.2. A simple explanation of Hotelling’s exponentially-
increasing error bound

The main reason why Hotelling obtained a round-
ing error bound for GE that increases exponentially 
with the size of the matrix is easy to understand by 
combining Axioms 1 and 2 (that Hotelling did not 
know!) with Algorithm 1, and performing a naive 
direct rounding error analysis. If Algorithm 1 is writ-
ten in formal mathematical language, i.e., avoiding 
equalities like aij = aij – aikakj that in formal Mathematics 
have the only meaning of aikakj = 0, then the following 
updating is obtained

Here aij
(k) are entries of the matrix A(k), k = 1, 2, ... , 

n, defined in Subsection 2.4 and note that only the 
entries k + 1 ≤ i, j ≤ n are updated at the kth stage, 
so we define aij

(k+1)= aij
(k) for the remaining entries. In 

addition, due to the fact that Algorithm 1 stores the 
nontrivial entries of the L factor in the strictly lower 
triangular part of A, the matrix A(k) has the following 
structure: it has zeros below the diagonal in the first 
k – 1 columns and the rest of the entries are the aij

(k) 
entries defined above.

Now, let us proceed with a simplified analysis and 
denote by Â(k) the computed matrix in floating point 
arithmetic by Algorithm 1 corresponding to the ex-
act matrix A(k). Â(1) does not involve any arithmetic 
operation, since it comes from storing A(1) := A in 
the computer and, therefore, Axiom 1 implies that 
âij

(1)= aij
(1) (1+δij) with |δij| ≤ u. This is equivalent to 

the following bound for the relative error7 in each 
entry: |âij

(1)  – aij
(1)|/|aij

(1)|=|δij| ≤ u. Assume now 
that the entries of Â(k) satisfy the relative error bound

i.e., ek is an upper bound on the maximum rela-
tive error at the kth stage of GE. This is what we 
want to determine by induction and by taking into ac-
count that we know e1 = u. Next, let us pay attention 
to the last term in (10), i.e., aik

(k) akj
(k)/ akk

(k), which is in 
fact the responsible of the exponential growth of the 
error bound. As most readers learnt when they were 

very young (probably, even before they learnt GE or, 
for sure, no later than the first year in the University), 
the relative error of an exact series of products and 
quotients of numbers affected by relative errors is the 
sum of the relative errors of each individual number. 
So, from (11), 

where 2nd-order terms in the errors have been discard-
ed. Of course, there are still more errors, coming from 
Axiom 2, when computing (10) in floating point 
arithmetic, but their effect is to increase the error 
bound in (12), they are not essential in our simplified 
analysis, and they are omitted. Therefore, a bound on 
the maximum relative error at (k + 1)th stage of GE, 
i.e., ek+1, satisfies ek+1 ≳ 3ek, and, since el = u ≈ 10-16 
and GE performs (n – 1) stage transitions for an n x n 
matrix, the following error bound

 is finally obtained. The error bound in (13) is really 
huge even for small sized matrices: for n = 30, en ≳ 
6.9 x 10–3 ; for n = 40, en ≳ 4.1 x 102; and, for n = 50, 
en ≳ 2.4 x 107. Therefore, for n ≥ 40, the error bound 
(13) does not guarantee a single digit of accuracy in 
the results of GE! As it was explained in Section 3, 
this led to general pessimism in mid 1940s about the 
practical use of GE and motivated the papers by von 
Neumann and Goldstine (1947) and by Turing (1948). 
However, the error analysis that appears in modern 
textbooks is the one presented by James Wilkinson 
in his fundamental 1961-paper. This is discussed in 
next subsection.

4.3. James Wilkinson’s backward error analysis of GE

Backward error analysis represents a drastic change 
of approach. The natural approach to rounding error 
analysis seems to be to bound the difference between 
the exact solution x of the linear system Ax = b and the 
approximate solution     computed in floating point arith-
metic by Algorithm 2, i.e., by modern GE. In contrast, 
backward error analysis bounds the difference be-
tween the matrix A and a certain matrix A+∆A such 

(10)

(11)

(12)

(13)
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that (A+∆A)    = b. If this difference is small, then 
backward error analysis establishes that the com-
puted solution is the exact solution of a nearby linear 
system. Although this might seem odd at a first glance, 
note that the exact matrix A is never available for the 
computer, because errors are made just by storing A 
in the computer (see Axiom 1) and, in addition, very 
often in practice the entries of A are affected by ex-
perimental or modelling errors. Therefore, even in the 
ideal case that GE does not make errors after stor-
ing A and b in the computer, the computed solution 
would be just the solution of a nearby linear system 
and backward error analysis aims to describe the best 
possible situation that one can imagine in practice.

Before stating Wilkinson’s famous result, it is nec-
essary to establish effective ways to measure differ-
ences between matrices (A and A+∆A) and vectors 
(x and    ). This is done via matrix and vector norms 
(Higham, 2002, Chapter 6). In this paper only the 
infinite-norm is used. If x is an n x 1 vector and A is 
an n x n matrix, then their vector and matrix infinite-
norms are defined as

Nowadays, every numerical analyst is familiar with 
matrix norms, but this was not the case in the 1940’s. 
In fact, the paper by Von Neumann and Goldstine 
(1947) was the first to bring matrix norms to the atten-
tion of numerical analysts in a systematic way. Now we 
can state (to first order in u) the result by Wilkinson.

Theorem 1 (Wilkinson, 1961. Backward errors in GE.) Let 
A be a real n x n nonsingular matrix, let b be a real n x 1 
vector, and let     be the approximate solution of the linear 
system Ax = b computed by GE with partial pivoting in a 
computer with unit roundoff u. Then     satisfies

where

is the growth factor of GE with partial pivoting. Here A(1) 
= A, A(2), ... , A(n) = U are the matrices appearing in the 
GE process as they were defined in Section 2.4.

The proof of Theorem 1 is not difficult with the 
tools currently available, but it requires some tech-
nical work so is omitted here. Interested readers 
can found two different modern proofs in Higham 
(2002) (shorter and sharper) and Golub and van 
Loan (1996) (following step by step Algorithm 2). 
Observe that equation (14) indeed states that the 
computed solution     is the exact solution of a lin-
ear system that is very close to the original one, i.e., 
to Ax = b, as long as the growth factor 𝜌n is not 
large. This is in fact the case as we will discuss in 
Subsection 4.4 and, so, it is said that GE with partial 
pivoting is a backward stable algorithm. Theorem 
1 is an instance of the “mantra” that every numeri-
cal analyst working on matrix computations should 
repeat again and again: “The ideal objective of an 
algorithm is to compute outputs that are exact for 
nearby inputs, because this means that the algo-
rithm achieves as much accuracy as the data war-
rants”. The most reputed algorithms of Numerical 
Linear Algebra are backward stable, but not all al-
gorithms used in practice are.

Some modern texts (Higham, 2002, p. 185) and papers 
(Grcar, 2011b) indicate that von Neumann and Goldstine 
(1947) and Turing (1948) introduced “backward error 
analysis”. In my opinion, this is not completely true. 
Von Neumann and Goldstine and Turing indeed men-
tioned backward errors (without the name) in these pa-
pers, but in a rather marginal way, and did not realize 
the importance of this concept. For instance, Turing 
mentions backward errors in the last page of his 22-
page paper and von Neumann and Goldstine in page 
71 of their 79-page paper. Wilkinson (1971a) attributed 
the credit for the first backward error analysis to Wal-
lace Givens in 1954 for an analysis of an algorithm for 
computing the eigenvalues of symmetric tridiagonal 
matrices by using the Sturm sequence property of 
their leading principal minors. Nowadays, backward 
error analysis is one of the most fundamental and 
powerful ideas in Numerical Analysis and this is 
mostly a consequence of the monumental research 
work done by James Wilkinson on rounding errors 
(see Figure 1).

James Wilkinson was a Cambridge-trained English 
mathematician who worked as Turing’s assistant at 
NPL (1946-48). He is considered the founder of modern 
rounding error analysis by using systematically backward 
errors for analysing many numerical algorithms for ma-
trix computations. He wrote two influential books on 

(14)

(15)
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Numerical Analysis: Rounding Errors in Algebraic Proc-
esses in 1963 and The Algebraic Eigenvalne Problem 
in 1965. James Wilkinson (1971b, pp. 143-144) said 
that his first contact with backward errors happened 
while he was serving in the United Kingdom Arma-
ment Research Department during World War II. At 
that time, he had to solve a system Ax = b of twelve 
linear equations and decided to use GE with partial 
pivoting. Wilkinson was sure that the computed solu-
tion     had errors several orders of magnitude larger 
than the unit roundoff (of those times!). However, 
when he substituted     in the equations to his “as-
tonishment the left-hand side agreed with the given 
right-hand side to” full accuracy. In modern lan-
guage, this means that the residual b – A      satisfied 
kb – A   k∞≈ ukbk∞, a fact that is deeply connected 
to backward errors, as we will discuss in Section 4.6. 
Wilkinson claimed at that time “I have the exact solu-
tion corresponding to a right-hand side which differs 
only in the tenth figure from the given one”. Unfortu-
nately, Wilkinson did not pursue then this line of re-
search since it was not appreciated by his taskmaster 
at the Armament Research Department.

4.4. One of the major unsolved problems in Numerical 
Analysis

The backward error bound (14) for GE with partial 
pivoting (GEPP) includes the growth factor 𝜌n of the 
matrix A. This factor is the ratio of the maximum ab-
solute value of the entries of the matrices arising in 
GEPP and the maximum absolute value of the entries 
of the original matrix A. Example 1 illustrates the 
growth factor in a matrix that has been arranged, for 
simplicity, in such a way that GEPP does not require 
any permutation.

Example 1

The maximum absolute value of the entries of A is 
10 and the maximum absolute value of the entries of 
A(2), A(3), and A(4) is 11.76. Therefore

Note that the growth factor is larger than or equal to 
one for any matrix A by definition.

The key question in this context is to determine 
whether there exist matrices with very large growth 
factors or not. The answer is given in Theorem 2 
and is yes. Wilkinson knew this fact as early as in 
1954, long before developing his backward error 
analysis.

Theorem 2 (Wilkinson, 1954) Let A be an n x n nonsingular 
matrix. Then the growth factor of A for GE with partial 
pivoting satisfies

and this bound is attained for the n x n matrix

Combining Theorem 2 with the bound in (14) for the 
unit roundoff u = 2—53 of double precision, one obtains

which is a huge bound for matrices with n ≥ 54, i.e., 
for very small matrices, and would make GEPP use-
less in practice. In a sense, (16) tells us that Hotelling 
was right: there is no way of avoiding in GEPP errors 
that increase exponentially with the size of the ma-
trix. However, note that Wilkinson’s analysis gives us 
much more information than Hotelling’s, since (14) 
implies that the backward errors are tiny whenever 
the growth factor 𝜌n of A is moderate. Therefore, 
GEPP would be a reliable algorithm in practice if ma-
trices with large growth factors are very rare, other-
wise it may produce frequently large errors. This is 
indeed the case: large growth factors are extremely 
rare, as it is stated in the next paragraph by Nick 
Higham (2002, p. 168):

“To summarize, although there are practically oc-
curring matrices for which partial pivoting yields 

(16)
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a moderately large, or even exponentially large, 
growth factor, the growth factor is almost in-
variably found to be small. Explaining this fact 
remains one of the major unsolved problems in 
Numerical Analysis.”

How should we pose precisely this unsolved prob-
lem? One option is to consider random matrices 
whose entries are independent random variables 
and to prove that the probability of encountering 
a growth factor 𝜌n > α decreases extremely fast as 
α increases (perhaps, exponentially fast!). More in-
formation on the solution of this problem, including 
a money prize, can be found in Trefethen (2012). 
Here, I want to stress some important facts on this 
open problem. First, its solution would not change 
at all the algorithm of modern GE. Second, GEPP 
has not waited for the solution of the open problem 
for being widely used, since GEPP is nowadays the 
standard method for solving linear systems of equa-
tions on computers, despite the fact that its stabil-
ity is not rigorously proved. This is based on years 
of practical experience with GEPP that have shown 
that large growth factors never occur in real comput-
ing. Third, the idea that practical numerical methods 
do not need to be fully supported by proofs to be 
useful goes back to Turing’s paper (1948), as will be 
discussed in Section 5. Finally, there are methods 
that are perfectly backward stable for solving linear 
systems (like the one based on the QR factorization 
(Trefethen and Bau, 1997)), but they are not used in 
practice since they are computationally more expen-
sive than GEPP.

4.5 From backward to forward errors: The condi-
tion number of a matrix

The fact that a numerical algorithm is “backward 
stable” is very satisfactory for numerical analysts, 
since it is equivalent to say that the errors are the best 
that can be expected from the input data. However, 
for users of software it may be a somewhat obscure 
concept and many times a bound on the forward er-
rors is preferred. In the case of GEPP, the forward er-
ror is k   -xk∞ ⁄ kxk∞, where x and     are, respectively, 
the exact and the computed solution of Ax = b. From 
Theorem 1, the problem of bounding the forward 
error in the solution can be posed as a pure math-
ematical problem of perturbation theory, i.e., if the 
input matrix A is perturbed, how much does the solu-
tion change? We use the notation of Theorem 1 and 
present the solution of this problem as it was stated 
by Wilkinson (1963, p. 93). 

where it is assumed that kA–1k∞k∆Ak∞< 1. By discard-
ing second order terms in the perturbation k∆Ak ∞ and 
by using (14), equation (17) becomes

The inequalities in (18) tell us that tiny relative per-
turbations of the matrix A may produce large relative 
variations in the solution if the number kAk∞kA–1k∞ 
is huge and that, even in the case that the growth fac-
tor of A is moderate, the “forward errors” committed 
by GEPP may he large if kAk∞kA–1k∞ is huge. We see 
that the number kAk∞kA–1k∞ plays a fundamental role 
in the perturbation theory of the solution of linear sys-
tems and in the “forward errors” committed by GEPP. It 
is the very famous condition number of a matrix: 

I want to insist more on a fact that is very familiar 
to numerical analysts, but that it is still surprising for 
many users of numerical software. There are not nu-
merical algorithms that solve linear systems of equa-
tions with guaranteed tiny forward errors, i.e., with 
forward errors that are always of order unit round-
off. Bounds O(u)k∞ (A) as the one in (18) are the best 
that hold for linear solvers valid for general matrices. 
There is no way to avoid in general the presence of the 
condition number.

The condition number k∞ (A) (or in other norms) arises 
in many other problems in matrix computations and from 
the point of view of perturbation theory and numerical 
applications is the most important single number at-
tached to a matrix (Demmel, 1997; Golub and van Loan, 
1996; Higham, 2002). It is not easy to determine who 
discovered the “condition number”. No question that 
the name was introduced by Turing (1948) and, in my 
opinion, Turing also deserves the credit for the con-
cept. The essentials are in his 1948-paper, although it is 
true that Turing gives an “unusual” definition of “condi-
tion number” and also that shows in an unusual way 
its relationship with the variation of the solution of 
a linear system Ax = b under perturbations of A and 

(17)

(18)

(19)
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b. Before Turing’s paper, von Neumann and Goldstine 
used the condition number (in the 2-norm and with 
the name “figure of merit”) in their error bounds, but 
they do not show any clear perturbation inequality 
involving the condition number. The first fully rigor-
ous perturbation results on condition numbers were 
proved by Bauer in 1959 for matrix inverses and by 
Wilkinson in 1963 for linear systems (see Grcar, 2011b 
for more details).

4.6 Backward errors and residuals

Theorem 1 presents backward errors of GEPP, but 
it does not show how Wilkinson reached this “at a 
first-glance unnatural” way of presenting/analysing 
rounding errors. I have already commented in the 
last paragraph of Section 4.3 that Wilkinson was mo-
tivated by a few numerical tests that always produced 
tiny residuals. In fact, we will see in Section 5 that this 
was also Turing’s motivation for undertaking his error 
analysis of GE. Therefore, I discuss in this section the 
deep connection existing between backward errors 
and residuals and how residuals can be used to give 
sharp optimal estimates of backward errors. The re-
sults can be applied to any algorithm for solving linear 
systems and not just to GEPP.

First, observe that if the approximated solution,    , 
of Ax = b computed by a certain algorithm satisfies 
(A+∆A)   = b, with k∆Ak∞ = O(u)kAk∞ then b-A   = 
∆A   . So, kb - A   k∞ ≤ k∆Ak∞k   k∞= O(u)kAk∞k   k∞. 
In plain words, this means that a tiny relative back-
ward error of order u implies a tiny relative residual 
kb - A   k∞/(kAk∞k   k∞) also of order u. Much more 
surprising is that the implication in the opposite di-
rection is also true, i.e., that a tiny relative residual 
implies a tiny relative backward error. In fact, for 
any matrix A and for any vectors    and b, it can be 
proved that

According to the discussion in Higham (2002, pages 12 
and 29), the result in (20) was proved by Wilkinson for 
the 2-norm in some moment in the 1950s and, after dis-
covering it, he began to develop backward error analysis 
systematically. Rigal and Gaches proved in 1967 a result 
much more general than (20), where they allow per-
turbations in A and b and the use of any vector norm 
and the corresponding subordinate matrix norm. An ex-
cellent modern reference on different relationships be-

tween residuals and backward errors for linear systems 
is Higham (2002, Chapter 7).

Now, the reader can fully appreciate why the fact 
that GEPP computed solutions     with relative residu-
als kb – A   k∞ / (kAk∞k   k∞) = O(u) in all the nu-
merical tests that Wilkinson performed was a strong 
motivation for trying to prove a result in the spirit of 
Theorem 1, but the proof had to wait for some years 
and came from the hand of the nontrivial growth 
factor. Also note that the left-hand side of (20) 
provides a simple practical way for computing the 
“best possible backward error” of the approximate 
solution     with respect the linear system Ax = b. 
We finish this section with an example that illus-
trates the presented concepts.

Example 2 Consider the matrix

and store it in the MATLAB program (Higham, 2002, p. 
575), which uses double precision floating point arith-
metic. MATLAB gives the following value for the condi-
tion number of A: k∞ (A)≈1.06x1022. Define the 3 x 1 
vector x = [1, 1, 1]T and compute in MATLAB b = Ax. 
So, we have constructed a linear system whose exact 
solution is known. Compute the solution       by using 
the backslash command (\) of MATLAB, which uses 
GEPP. Then we get, also in MATLAB,

The growth factor (15) of A for GEPP is 1. Observe 
that the relative error in the solution is huge, which is 
explained by (18) with u ≈ 10–16. However, the relative 
residual is of order u, according to (14) and (20). As 
Wilkinson used to say, huge errors in the solution must 
be “diabolically correlated” to give tiny residuals.

5. REMARKS ON ALAN TURING’S PAPER ON 
ROUNDING ERRORS

Alan Turing wrote his famous “rounding-off error” pa-
per (1948) when he and James Wilkinson were in the Na-
tional Physical Laboratory. The story of the genesis of 
the paper is told by Wilkinson (1971b, pp. 144-145), 
where one can read the following

“... it happened that some time after my arrival, 
a system of 18 equations arrived in Mathemat-

(20)
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ics Divison and ... we finally decided to abandon 
theorizing and to solve it ... The operation was 
manned by Fox, Goodwin, Turing, and me, and we 
decided on Gaussian elimination with complete 
pivoting. Turing was not particularly enthusiastic 
... partly because he was convinced that it would 
be a failure. History repeated ... and the residuals 
were again of order 10-10, that is of the size cor-
responding to the exact solution rounded to ten 
decimals. ... I suppose this must be regarded as 
a defeat for Turing since he, at that time, was a 
keener adherent than any of the rest of us to the 
pessimistic school. However, I’m sure that this ex-
perience made quite an impression on him and set 
him thinking afresh on the problem of rounding 
errors in elimination processes. About a year later 
he produced his famous paper “Rounding-off er-
rors in matrix processes” ...”

In the modern language introduced in Section 4.6 
what Turing, Wilkinson and coworkers observed was that 
the relative residual was of order unit roundoff. Tur-
ing (1948, p. 287) recognised that he was prompted 
to carry out his “research largely by the practical 
work of L. Fox in applying the elimination meth-
od”. Curiously, Turing (1948) did not mention here 
to Wilkinson, although he cited among the references 
a paper by Fox, Huskey, and Wilkinson on this subject 
published in the same journal and volume as Turing’s 
paper but 140 pages before.

Turing believed, based on a few numerical tests 
available in the 1940s, that GE with pivoting was a 
stable method for solving general systems of linear equa-
tions on a computer, and he undertook for first time the 
task of developing the corresponding rounding error 
analysis. Recall, in this context, that von Neumann and 
Goldstine (1947) only analysed the stability of posi-
tive definite linear systems. However, Turing knew 
that GE could fail, although only in exceptional cas-
es. This is made explicit in the first page of Turing 
(1948), where one finds

“Actually, although examples can be constructed 
where as many as nlog102 extra figures would be re-
quired, these are exceptional. In the present paper 
the magnitude of the error is described in terms of 
quantities not considered in Hotelling’s analysis; 
from the inequalities proved here it can immediately 
be seen that in all normal cases the Hotelling esti-
mate is far too pessimistic.”

Therefore, Turing essentially reached in the 
1940s the same conclusion that remains valid 
today and that has been discussed in Section 4.4: 

although the error bounds of GEPP may increase ex-
ponentially with the size for some matrices, these 
matrices are very rare and GEPP can be used with 
confidence in practice. This Turing’s pioneer insight 
has influenced in depth Numerical Analysis in 
general, and Matrix Computations in particular. 
Observe also in this point, the differences between Tu-
ring’s way of thinking and those of Hotelling and von 
Neumann and Goldstine. Hotelling discovered that GE 
may produce errors that increase exponentially with 
the size of the matrix, something that is entirely true, 
and this led him to pessimism on the use of GE. He was 
not able to determine if these exponentially increasing 
error bounds happen very rarely or not. On the other 
hand von Neumann and Goldstine did not consider 
even the possibility of performing an error analysis of 
GE for general matrices, since they were unable to 
avoid the exponential error bound.

However, it should be also remarked that Turing’s 
analysis is non-standard from a modern point of view. In 
particular, it is based on the key assumption (Turing, 
1948, pp. 302 and 306), that I quote literally

“We assume that in the calculation of each quantity

an error of at most ∊ is made. How this is to be se-
cured need not be specified, but it is clear that the 
number of figures to be retained in Air

(r–1)/Arr
(r–1) 

will have to depend on the values of the Arj
(r–1).”

The difficulty with this assumption is that no computer, 
either present or past, can guarantee a rounding error 
bound like this in finite precision arithmetic. In fact, “the 
error at most ∊” eliminates from Turing’s analysis any 
possibility of discovering the growth factor, which 
does not appear at all in his 1948-paper. Turing’s roun-
ding error bound for the solution of Ax = b are expres-
sed in terms of the unknown quantity ∊. Even with the 
unrealistic and ideal assumption ∊ = u kAk∞, Turing’s 
error bound for the approximate solution     compu-
ted by GEPP becomes a non optimal bound of the 
type kx –   k∞ / kxk∞≲ (kAk∞kA–1k∞)2 p(n)u, with 
p(n) a low degree polynomial in n that does not 
depend on the growth factor. A trivial change in 
the last steps of Turing’s analysis would produce 
kx –    k∞ / kxk∞≲ (kAk∞kA–1k∞)(p(n)u) , which has 
the standard form (18) but does not include the 
growth factor.
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6. RESEARCH ON ERROR ANALYSIS OF GAUSSIAN 
ELIMINATION IS STILL ACTIVE

Since Wilkinson’s pioneer paper was published in 
1961 many papers have been written on rounding error 
analysis of GE. This is a consequence of the fact that 
Wilkinson’s Theorem 1 is essentially the best that 
can be proved for general nonsingular matrices A via 
a normwise analysis, i.e., bounding just the norm of  
∆A. However, if the matrix A belongs to some particu-
lar classes, then the properties of those classes can be 
exploited to obtain better bounds. It is also possible 
to perform a componentwise backward error analysis 
that often produces sharper results. The discussion of 
these topics is beyond the scope of this introductory 
paper, and I refer the reader to Higham (2002) and the 
references therein for more complete information on 
these topics.

As examples of very recent activities on the error 
analysis of GE, I discuss here very briefly the research 
presented in the papers Grigori, Demmel and Xiang 
(2011) and Dopico and Molera (2012) published in 
the last two years. Grigori, Demmel and Xiang (2011) 
consider the LU factorization in the context of one of 
the hottest topics of numerical computations of the last 
years: “communication avoiding algorithms”. In cur-
rent and future computers the cost of communication 
(moving data between different levels of memory or 
between different processors) greatly exceeds the cost 
of performing arithmetic operations, therefore there 
is a strong motivation for developing new algorithms 
that communicate as little as possible, even if they do 
more arithmetic. In GE, this prevents the use of partial 
pivoting and a new strategy known as “tournament piv-
oting” has been proposed, which has required a new 
error analysis to prove its backward stability. Dopico 
and Molera (2012) develop and analyse a framework 
that uses special implementations of GE with com-

plete pivoting that allow us to compute solutions of 
linear systems with relative errors O(u), i.e., removing 
the condition number in the bound (18), for the larg-
est class of structured matrices known so far.

7. CONCLUSIONS

I have reviewed at an introductory level the first re-
search works on the rounding error analysis of one of 
the most important numerical algorithms in Math-
ematics: Gaussian elimination for solving systems of 
linear equations. The pioneer work on this topic pub-
lished by Alan Turing in 1948 has received particular 
attention, as well as the key results proved by James 
Wilkinson in 1961. In addition, other works published 
in the 1940’s on the error analysis of GE have been dis-
cussed and the historical context of all these works has 
been considered in connection with the construction of 
modern computers in the 1940s. It has been pointed 
out that a complete and rigorous solution for the sta-
bility problem of GE still remains as an open problem.
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NOTES

1	 This work was partially supported by the 
Ministerio de Economía y Competitivi-
dad of Spain through grant MTM-2009-
09281 and was originated by a talk with 
the same title presented in the Interna-
tional Symposium “The Alan Turing Leg-
acy” held in Madrid (Spain) in October 
23-24, 2012. This symposium was organ-
ized and funded by the Real Academia 
de Ciencias Exactas, Físicas y Naturales 
of Spain and Fundación Ramón Areces.

2	 The title of Grcar (2011b) and the 
present paper are rather similar and 
this is not by chance!!

3	 Readers should note that for systems 
having the same number of equations 

as unknowns this is, by far, the most 
frequent case in practice, since the 
probability that a square matrix is sin-
gular is zero.

4	 Note  that akk at kth stage is not the 
(k, k) entry of the original matrix since 
the entries of A are updated by Algo-
rithm 1. Although it is very rare, akk = 
0 may happen and, in this case, Algo-
rithm 1 fails.

5	 It should be noted that today, it is widely 
known that the use of normal equations 
for solving least squares problems may 
be unstable and they are never used 
in professional software. The standard 
algorithm for least squares problems is 

based on another famous matrix fac-
torization: the QR factorization (Dem-
mel, 1997; Golub and van Loan, 1996; 
Higham, 2002). However, this was 
unknown when the paper by von Neu-
mann and Goldstine was published.

6	 Therefore ENIAC is not considered a 
“modern computer”.

7	 In this informal analysis, it is assumed 

that all entries aij
(k), for 1 ≤ k ≤ n and 

k ≤  i, j ≤ n, are different from zero. This 
assumption is generic and allows us to 
avoid technicalities that would obscure 
the main ideas.

REFERENCES

Aspray, W. and Burks, A. (eds.) (1987). Pa-
pers of John von Neumann on Comput-
ing and Computer Theory. Cambridge, 
MA: MIT Press.

Carpenter, B. E. and Doran, R. W. (eds.) 
(1986). A. M. Turing’s ACE report of 
1946 and other papers. Cambridge, MA: 
MIT Press.

Demmel, J. W. (1997). Applied Numerical 
Linear Algebra. Philadelphia, PA: Socie-
ty for Industrial and Applied Mathemat-
ics (SIAM).

Dieudonné, J. (1981). “Von Neumann, Jo-
han (or John)”. In: Dictionary of Scien-
tific Biographies, Vol. 14, C. C. Gillispie, 
ed., New York: Charles Scribner’s Sons, 
pp. 89-92.

Dongarra, J. and Sullivan, F. (2000). “The 
top 10 algorithms of the century”. 
Compnt. Sci. Eng., 2, pp. 22-23.

Dopico, F. M. and Molera, J. M. (2012). 
“Accurate solution of structured linear 
systems via rank-revealing decomposi-
tions”. IMA J. Nnmer. Anal., 32 (3), pp. 
1096-1116.

Golub, G. and Van Loan, C. (1996). Matrix, 
Computations. Baltimore, MD: Johns 
Hopkins University Press, 3rd edition.

Grcar, J. F. (2011a). “How ordinary elimina-
tion became Gaussian elimination”. His-
toria Math., 38 (2), pp. 163-218.

Grcar, J. F. (2011b). “John von Neumann’s 
analysis of Gaussian elimination and the 
origins of modern Numerical Analysis”. 
SIAM Rev., 53 (4), pp. 607-682.

Grcar, J. F. (2011c). “Mathematicians of 
Gaussian elimination”. Notices Amer. 
Math. Soc., 58 (6), pp. 782-792.

Grigori, L.; Demmel, J. W. and Xiang, 
H. (2011). “CALU: a communication 
optimal LU factorization algorithm”. 
SIAM J. Matrix, Anal. Appl., 32 (4), 
pp. 1317-1350.

Higham, N. J. (2002). Accuracy and Stability 
of Numerical Algorithms. Philadelphia, 
PA: Society for Industrial and Applied 
Mathematics (SIAM), second edition.

Higham, N. J. (2011). “Gaussian elimina-
tion”. Wiley Interdisciplinary Reviews: 
Computational Statistics, 3, pp. 230-
238.

Hodges, A. (2012). Alan Turing: the Enigma. 
Princeton, NJ: Princeton University 
Press, centenary edition.

Hotelling, H. (1943). “Some new methods 
in matrix calculation”. Ann. Math. Sta-
tistics, 14, pp. 1-34.

Rigal, J.-L. and Gaches, J. (1967). “On the 
compatibility of a given solution with 
the data of a linear system”. J. Assoc. 
Compnt. Mach., 14, pp. 543-548.

Rojas, R. and Hashagen, U. (eds.) (2000). 
The First Computers. History and Archi-
tectures. Cambridge, MA: MIT Press.

Trefethen, L. N. (2012). “The Smart Mon-
ey’s on Numerical Analysts”. SIAM 
News, 45 (9), 1-5.

Trefethen, L. N. and David Bau III (1997). 
Numerical Linear Algebra. Philadelphia, 

PA: Society for Industrial and Applied 
Mathematics (SIAM).

Turing, A. M. (1948). “Rounding-off errors 
in matrix processes”. Quart. J. Mech. 
Appl. Math., 1, pp. 287-308.

von Neumann, J. and Goldstine, H. H. 
(1947). “Numerical inverting of matri-
ces of high order”. Bull. Amer. Math. 
Soc., 53, pp. 1021-1099.

Wilkinson, J. H. (1954). “Linear Algebra 
on the Pilot ACE”. In Automatic Digital 
Computation, Her Majesty’s Stationery 
Office, London.

Wilkinson, J. H. (1960). “Error analysis of 
floating-point computation”. Numer. 
Math., 2, pp. 319-340.

Wilkinson, J. H. (1961). “Error analysis of 
direct methods of matrix inversion. I”. 
J.  Assoc. Comput. Mach., 8, pp. 281-330.

Wilkinson, J. H. (1963). Rounding Errors in 
Algebraic Processes. Englewood Cliffs, 
N.J.: Prentice-Hall Inc.

Wilkinson, J. H. (1965). The Algebraic Ei-
genvalue Problem. Oxford: Clarendon 
Press.

Wilkinson, J. H. (1971a). “Modern error 
analysis”. SIAM Rev., 13, pp. 548-568.

Wilkinson, J. H. (1971b). “Some comments 
from a numerical analyst”. J. Assoc. 
Comput. Mach., 18, pp. 137-147.


