Virus entéricos humanos en alimentos: detección y métodos de inactivación

Autores/as

DOI:

https://doi.org/10.3989/arbor.2020.795n1003

Palabras clave:

virus entéricos, seguridad alimentaria, inactivación vírica, compuestos virucidas, envases virucidas, métodos moleculares, metagenómica

Resumen


Los principales patógenos víricos que podemos ad­quirir ingiriendo alimentos contaminados son los norovirus, el virus de la hepatitis A y el virus de la hepatitis E que se propagan principalmente a través de la vía fecal oral. En los últimos años, la incidencia de brotes de transmisión alimentaria causados por estos patógenos ha experimentado un aumento considerable, en parte debido al comercio globalizado y a los cambios en los hábitos de consumo. Las matrices alimentarias que mayor riesgo representan para el consumidor son los moluscos bivalvos, ve­getales de IV gama, frutas tipo baya y platos listos para comer. Actualmente las técnicas moleculares son las más habituales para la detección de estos patógenos en alimentos, aunque toda­vía existen dudas acerca del significado de la presencia de estos genomas víricos en términos de seguridad alimentaria. La infec­tividad de estos patógenos en alimentos viene también determi­nada por su elevada persistencia ambiental y por su resistencia a los tratamientos aplicados para la conservación de los alimentos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aarestrup, F. M., Brown, E. W., Detter, C., Gerner-Smidt, P., Gilmour, M. W., Harmsen, D. […] y Schlundt, J. (2012). Integrating genome-based informatics to modernize global disease moni­toring, information sharing, and res­ponse. Emerging Infectious Diseases, 18 (11), e1. https://doi.org/10.3201/eid1811.120453

Amankwaah, C. (2013). Incorporation of selected plant extracts into edible chito­san films and the effect on the antiviral, antibacterial and mechanical properties of the material. [Tesis doctoral inédi­ta]. The Ohio State University. Disponi­ble en http://rave.ohiolink.edu/etdc/view?acc_num=osu1366220367

Aw, T. G., Wengert, S. y Rose, J. B. (2016). Metagenomic analysis of viruses as­sociated with field-grown and retail lettuce identifies human and animal vi­ruses. International Journal of Food Mi­crobiology, 223, pp. 50-56. https://doi.org/10.1016/j.ijfoodmicro.2016.02.008 PMid:26894328

Bartsch, C., Höper, D., Mäde, D. y Johne, R. (2018). Analysis of frozen strawberries involved in a large norovirus gastroen­teritis outbreak using next generation sequencing and digital PCR. Food Mi­crobiology, 76, pp. 390-395. https://doi.org/10.1016/j.fm.2018.06.019 PMid:30166165

Bosch, A., Sánchez, G., Abbaszadegan, M., Carducci, A., Guix, S., Le Guyader, F. S. […] y Sellwood, J. (2011). Analytical Methods for Virus Detection in Water and Food. Food Analytical Methods, 4 (1), pp. 4-12. https://doi.org/10.1007/s12161-010-9161-5

Breitbart, M., Salamon, P., Andresen, B., Mahaffy, J. M., Segall, A. M., Mead, D., Azam, F. y Rohwer, F. (2002). Ge­nomic analysis of uncultured marine viral communities. Proceedings of the National Academy of Sciences of the United States of America, 99 (22), pp. 14250-14255. https://doi.org/10.1073/pnas.202488399 PMid:12384570 PMCid:PMC137870

Briese, T., Kapoor, A., Mishra, N., Jain, K., Kumar, A., Jabado, O. J. y Ian Lipkina, W. (2015). Virome capture sequencing enables sen­sitive viral diagnosis and comprehensive virome analysis. MBio, 6 (5), e01491-15. https://doi.org/10.1128/mBio.01491-15 PMid:26396248 PMCid:PMC4611031

Conceição-Neto, N., Zeller, M., Lefrère, H., De Bruyn, P., Beller, L., Deboutte, W. [...] Matthijnssens, J. (2015). Modular approach to customise sample prepara­tion procedures for viral metagenomics: A reproducible protocol for virome analysis. Scientific Reports, 5 (1), 16532. https://doi.org/10.1038/srep16532 PMid:26559140 PMCid:PMC4642273

Costantini, V., Morantz, E. K., Browne, H., Ettayebi, K., Zeng, X. L., Atmar, R. L., Estes, M. K. y Vinjé, J. (2018). Human norovirus replication in human intesti­nal enteroids as model to evaluate virus inactivation. Emerging Infectious Disea­ses, 24 (8), pp. 1453-1464. https://doi.org/10.3201/eid2408.180126 PMid:30014841 PMCid:PMC6056096

Cotten, M., Oude Munnink, B., Canuti, M., Deijs, M., Watson, S. J., Kellam, P. y van der Hoek, L. (2014). Full genome virus detection in fecal samples using sensi­tive nucleic acid preparation, deep se­quencing, and a novel iterative sequen­ce classification algorithm. PLoS ONE, 9 (4), e93269. https://doi.org/10.1371/journal.pone.0093269 PMid:24695106 PMCid:PMC3973683

Coudray-Meunier, C., Fraisse, A., Martin- Latil, S., Guillier, L. y Perelle, S. (2013). Discrimination of infectious hepatitis A virus and rotavirus by combining dyes and surfactants with RT-qPCR. BMC Microbiology, 13 (1), 216. https://doi.org/10.1186/1471-2180-13-216 PMid:24083486 PMCid:PMC3853579

DiCaprio, E., Ma, Y., Purgianto, A., Hughes, J. y Li, J. (2012). Internalization and dis­semination of human norovirus and animal caliciviruses in hydroponically grown romaine lettuce. Applied and En­vironmental Microbiology, 78 (17), pp. 6143-6152. https://doi.org/10.1128/AEM.01081-12 PMid:22729543 PMCid:PMC3416640

European Food Safety Authority and Eu­ropean Centre for Disease Prevention and Control (EFSA and ECDC) (2018). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne out­breaks in 2017. EFSA Journal, 16 (12), e05500. https://doi.org/10.2903/j.efsa.2018.5500 PMid:32625785 PMCid:PMC7009540

European Food Safety Authority (EFSA) (2019). Scientific report on analysis of the European baseline survey of noro­virus in oysters. EFSA Journal, 17 (7), e05762. https://doi.org/10.2903/j.efsa.2019.5762 PMid:32626378

Fabra, M. J., Castro-Mayorga, J. L., Randaz­zo, W., Lagarón, J. M., López-Rubio, A., Aznar, R. y Sánchez, G. (2016). Effica­cy of Cinnamaldehyde Against Enteric Viruses and Its Activity After Incorpo­ration Into Biodegradable Multilayer Systems of Interest in Food Packaging. Food and Environmental Virology, 8 (2), pp. 125-132. https://doi.org/10.1007/s12560-016-9235-7 PMid:27008344

Falcó, I., Flores-Meraz, P. L., Randazzo, W., Sánchez, G., López-Rubio, A. y Fabra, M. J. (2019). Antiviral activity of alginate-oleic acid based coatings incorporating green tea extract on strawberries and raspberries. Food Hydrocolloids, 87, pp. 611-618. https://doi.org/10.1016/j.foodhyd.2018.08.055

Falcó, I., Randazzo, W., Sánchez, G., López- Rubio, A. y Fabra, M. J. (2019). On the use of carrageenan matrices for the development of antiviral ediblecoa­tings of interest in berries. Food Hy­drocolloids, 92, pp. 74-85. https://doi.org/10.1016/j.foodhyd.2019.01.039

Falcó, I., Randazzo, W., Rodríguez-Díaz, J., Gozalbo-Rovira, R., Luque, D., Aznar, R. y Sánchez, G. (2019). Antiviral activity of aged green tea extract in model food systems and under gastric conditions. International Journal of Food Micro­biology, 292, pp. 101-106. https://doi.org/10.1016/j.ijfoodmicro.2018.12.019 PMid:30594741

Falcó, I., Randazzo, W., Gómez-Mascara­que, L. G., Aznar, R., López-Rubio, A. y Sánchez, G. (2018). Fostering the an­tiviral activity of green tea extract for sanitizing purposes through controlled storage conditions. Food Control, 84, pp. 485-492. https://doi.org/10.1016/j.foodcont.2017.08.037

Fernandez-Cassi, X., Timoneda, N., Gonza­les-Gustavson, E., Abril, J. F., Bofill-Mas, S. y Girones, R. (2017). A metagenomic assessment of viral contamination on fresh parsley plants irrigated with fe­cally tainted river water. International Journal of Food Microbiology, 257, pp. 80-90. https://doi.org/10.1016/j.ijfoodmicro.2017.06.001 PMid:28646670

Fraisse, A., Coudray-Meunier, C., Martin- Latil, S., Hennechart-Collette, C., Delan­noy, S., Fach, P. y Perelle, S. (2017). Digi­tal RT-PCR method for hepatitis A virus and norovirus quantification in soft be­rries. International Journal of Food Mi­crobiology, 243, pp. 36-45. https://doi.org/10.1016/j.ijfoodmicro.2016.11.022 PMid:27960104

Fraisse, A., Niveau, F., Hennechart-Collette, C., Coudray-Meunier, C., Martin-Latil, S. y Perelle, S. (2018). Discrimination of infectious and heat-treated norovirus by combining platinum compounds and real-time RT-PCR. International Journal of Food Microbiology, 269, pp. 64-74. https://doi.org/10.1016/j.ijfoodmicro.2018.01.015 PMid:29421360

Fuster, N., Pintó, R. M., Fuentes, C., Begui­ristain, N., Bosch, A. y Guix, S. (2016). Propidium monoazide RTqPCR assays for the assessment of hepatitis A inacti­vation and for a better estimation of the health risk of contaminated waters. Wa­ter Research, 101, pp. 226-232. https://doi.org/10.1016/j.watres.2016.05.086 PMid:27262550

Joshi, S. S., Su, X. y D'Souza, D. H. (2015). An­tiviral effects of grape seed extract aga­inst feline calicivirus, murine norovirus, and hepatitis A virus in model food sys­tems and under gastric conditions. Food Microbiology, 52, pp. 1-10. https://doi.org/10.1016/j.fm.2015.05.011 PMid:26338111

Kupferschmidt, K. (2016). Europe's new hepatitis problem. Science, 353 (6302), pp. 862-863. https://doi.org/10.1126/science.353.6302.862 PMid:27563081

Li, D., Baert, L., Zhang, D., Xia, M., Zhong, W., Van Coillie, E., Jiang, X. y Uytten­daele, M. (2012). Effect of grape seed extract on human norovirus GII.4 and murine norovirus 1 in viral suspensions, on stainless steel discs, and in lettuce wash water. Applied and Environmental Microbiology, 78 (21), pp. 7572-7578. https://doi.org/10.1128/AEM.01987-12 PMid:22904060 PMCid:PMC3485726

López-Gálvez, F., Randazzo, W., Vásquez, A., Sánchez, G., Tombini Decol, L., Aznar, R., Gil, M. I. y Allende, A. (2018). Irrigating Lettuce with Wastewater Effluent: Does Disinfection with Chlorine Dioxide Inac­tivate Viruses? Journal of Environmental Quality, 47 (5), pp. 1139-1145. https://doi.org/10.2134/jeq2017.12.0485 PMid:30272803

Lowther, J. A., Bosch, A., Butot, S., Ollivier, J., Mäde, D., Rutjes, S. A., Hardouin, G., Lombard, B., in't Veld, P. y Leclercq, A. (2019). Validation of ISO method 15216 part 1 - Quantification of hepatitis A virus and norovirus in food matrices. International Journal of Food Micro­biology, 288, pp. 82-90. https://doi.org/10.1016/j.ijfoodmicro.2017.11.014 PMid:29229293

Moreno, L., Aznar, R. y Sánchez, G. (2015). Application of viability PCR to discrimi­nate the infectivity of hepatitis A virus in food samples. International Journal of Food Microbiology, 201, pp. 1-6. https://doi.org/10.1016/j.ijfoodmicro.2015.02.012 PMid:25720326

Nieuwenhuijse, D. F. y Koopmans, M. P. G. (2017). Metagenomic sequencing for surveillance of food- and waterborne viral diseases. Frontiers in Microbio­logy, 8, 230. https://doi.org/10.3389/fmicb.2017.00230 PMid:28261185 PMCid:PMC5309255

Park, E. J., Kim, K. H., Abell, G. C. J., Kim, M. S., Roh, S. W. y Bae, J. W. (2011). Me­tagenomic analysis of the viral commu­nities in fermented foods. Applied and Environmental Microbiology, 77 (4), pp. 1284-1291. https://doi.org/10.1128/AEM.01859-10 PMid:21183634 PMCid:PMC3067239

Persson, S., Eriksson, R., Lowther, J., Ells­tröm, P. y Simonsson, M. (2018). Com­parison between RT droplet digital PCR and RT real-time PCR for quantification of noroviruses in oysters. International Journal of Food Microbiology, 284, pp. 73-83. https://doi.org/10.1016/j.ijfoodmicro.2018.06.022 PMid:30005929

Prevost, B., Goulet, M., Lucas, F. S., Joyeux, M., Moulin, L. y Wurtzer, S. (2016). Viral persistence in surface and drin­king water: Suitability of PCR pre-treatment with intercalating dyes. Wa­ter Research, 91, pp. 68-76. https://doi.org/10.1016/j.watres.2015.12.049 PMid:26773484

Randazzo, W., D'Souza, D. H. y Sanchez, G. (2018). Norovirus: The Burden of the Unknown. En Rodriguez-Lazaro, D. (ed.) Advances in Food and Nutrition Research (vol. 86). Academic Press, pp. 13-53. https://doi.org/10.1016/bs.afnr.2018.02.005 PMid:30077220

Randazzo, W., Fabra, M. J., Falcó, I., López- Rubio, A. y Sánchez, G. (2018). Poly­mers and Biopolymers with Antiviral Activity: Potential Applications for Im­proving Food Safety. Comprehensive Reviews in Food Science and Food Sa­fety, 17 (3), pp. 754-768. https://doi.org/10.1111/1541-4337.12349 PMid:33350126

Randazzo, W., Falcó, I., Aznar, R. y Sánchez, G. (2017). Effect of green tea extract on enteric viruses and its application as natural sanitizer. Food Microbiology, 66, pp. 150-156. https://doi.org/10.1016/j.fm.2017.04.018 PMid:28576363

Randazzo, W., Khezri, M., Ollivier, J., Le Gu­yader, F. S., Rodríguez-Díaz, J., Aznar, R. y Sánchez, G. (2018). Optimization of PMAxx pretreatment to distinguish between human norovirus with intact and altered capsids in shellfish and sewage samples. International Journal of Food Microbiology, 266, pp. 1-7. https://doi.org/10.1016/j.ijfoodmicro.2017.11.011 PMid:29156242

Randazzo, W., Vasquez-García, A., Aznar, R. y Sánchez, G. (2018). Viability RT-qPCR to distinguish between HEV and HAV with intact and altered capsids. Fron­tiers in Microbiology, 9, 1973. https://doi.org/10.3389/fmicb.2018.01973 PMid:30210465 PMCid:PMC6119771

Ricci, A., Allende, A., Bolton, D., Chemaly, M., Davies, R., Fernandez Escamez, P. S. […] y Girones, R. (2017). Public health risks associated with hepatitis E virus (HEV) as a food‐borne pathogen. EFSA Journal, 15 (7), e04886. https://doi.org/10.2903/j.efsa.2017.4886 PMid:32625551

Sánchez, G. (2015). Processing Strategies to Inactivate Hepatitis A Virus in Food Products: A Critical Review. Comprehen­sive Reviews in Food Science and Food Safety, 14 (6), pp. 771-784. https://doi.org/10.1111/1541-4337.12154

Sánchez, G., Elizaquível, P. y Aznar, R. (2012). Discrimination of Infectious Hepatitis A Viruses by Propidium Monoazide Real- Time RT-PCR. Food and Environmental Virology, 4 (1), pp. 21-25. https://doi.org/10.1007/s12560-011-9074-5 PMid:23412764

Varela, M. F., Monteiro, S., Rivadulla, E., San­tos, R. y Romalde, J. L. (2018). Develop­ment of a novel digital RT-PCR method for detection of human sapovirus in di­fferent matrices. Journal of Virological Methods, 254, pp. 21-24. https://doi.org/10.1016/j.jviromet.2018.01.005 PMid:29407209

Yang, Z., Mammel, M., Papafragkou, E., Hida, K., Elkins, C. A. y Kulka, M. (2017). Application of next generation sequen­cing toward sensitive detection of ente­ric viruses isolated from celery samples as an example of produce. International Journal of Food Microbiology, 261, pp. 73-81. https://doi.org/10.1016/j.ijfoodmicro.2017.07.021 PMid:28992517

Recursos en línea

ISO 15216-1:2017. Microbiology of the Food Chain - Horizontal Method for Determination of Hepatitis A Virus and Norovirus Using Real-time RT-PCR - Part 1: Method for Quantification. [En línea]. Disponible en https://www.iso.org/obp/ui/#iso:std:iso:15216:-1:ed-1:v1:en

World Health Organization. WHO estima­tes of the global burden of foodborne diseases. Foodborne diseases burden epidemiology reference group 2007- 2015. [En línea]. Disponible en https://apps.who.int/iris/bitstream/handle/10665/199350/9789241565165_eng.pdf?sequence=1

Publicado

2020-03-30

Cómo citar

Randazzo, W., Falcó, I., Pérez-Cataluña, A., & Sánchez, G. (2020). Virus entéricos humanos en alimentos: detección y métodos de inactivación. Arbor, 196(795), e539. https://doi.org/10.3989/arbor.2020.795n1003

Número

Sección

Artículos