Resolución de estructuras cristalográficas


  • Claudia Millán Institute of Molecular Biology of Barcelona (IBMB). Consejo Superior de Investigaciones Científicas
  • Isabel Usón Institute of Molecular Biology of Barcelona (IBMB). Consejo Superior de Investigaciones Científicas. Institució Catalana de Recerca i Estudis Avançats


Palabras clave:

problema de la fase, constricciones, factores de estructura, mapas de Fourier, métodos de búsqueda, minimización, máxima verosimilitud, optimización, restricciones, rayos-X


La cristalografía proporciona una visión tridimensional de las moléculas a un nivel de detalle atómico, que no sólo resulta muy informativa sino que además puede ser fácil e intuitivamente comprendida por seres tan predominantemente visuales como solemos ser los humanos. Sin embargo, al contrario que la microscopía, esta técnica no ofrece directamente una imagen y el modelo estructural no puede calcularse directamente a partir de los datos de difracción, ya que solamente las intensidades de los rayos difractados y no sus fases son accesibles a la medida experimental. Para determinar la estructura tridimensional las fases deben ser obtenidas por medio de métodos adicionales, bien experimentales o computacionales. Esto constituye el problema de la fase en cristalografía. En este artículo ofreceremos una visión general de los principales hitos en la búsqueda de las fases perdidas.


Los datos de descargas todavía no están disponibles.


Abad-Zapatero, C., Abdel-Meguid, S. S., Johnson, J. E., Leslie, A. G., Rayment, I., Rossmann, M. G., Suck, D. and Tsukihara, T. (1980). Structure of southern bean mosaic virus at 2.8Å resolution. Nature, 286, pp. 33–39.

Adams, M. J., Blundell, T. L., Dodson, E. J., Dodson, G. G., Vijayan, M., Baker, E. N., Harding, M. M., Hodgkin, D. C., Rimmer, B. and Sheat, S. (1969). Structure of Rhombohedral 2 Zinc Insulin Crystals. Nature, 224, pp. 491.

Allen, F. H. (2002). The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallographica, B58, pp. 380-388.

Amunts, A., Brown, A., Bai, X. C., Llácer, J. L., Hussain, T., Emsley, P., Long, F., Murshudov, G., Scheres, S. H. and Ramakrishnan V. (2014). Structure of the yeast mitochondrial large ribosomal subunit. Science, 343, pp. 1485-1489. PMid:24675956 PMCid:PMC4046073

Armstrong, H. E. (1927). Poor Common Salt! Nature, 120, pp. 478.

Astbury, W. T. and Street, A. (1932). A. X-Ray studies of the structure of hair, wool, and related fibers. I. General. Philosophical Transactions of the Royal Society A, 230, pp. 75– 101.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. and Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28, pp. 235-242. PMid:10592235 PMCid:PMC102472

Bernal, J. D. and Crowfoot, D. (1934). X-Ray Photographs of Crystalline Pepsin. Nature, 133, pp. 794–795.

Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. and Tasumi, M. (1977). The Protein Data Bank: a computer-based archival file for macromolecular structures. Journal of Molecular Biology, 112, pp. 535-542.

Bibby, J., Keegan, R. M., Mayans, O., Winn, M. D. and Rigden, D. J. (2012). AMPLE: a cluster-and-truncate approach to solve the crystal structures of small proteins using rapidly computed ab initio models. Acta Crystallographica, D68, pp. 1622-1631. PMid:23151627

Bragg, W. L. (1913a). The Diffraction of Short Electromagnetic Waves by a Crystal. Mathematical Proceedings of the Cambridge Philosophical Society, 17, pp. 43–57.

Bragg, W. L. (1913b). The Structure of Some Crystals as indicated by their Diffraction of X-rays. Proceedings of the Royal Society of London, 89, pp. 248-277.

Bragg, W. L. (1925). The Crystalline Structure of Inorganic Salts. Nature, 116, pp. 557.

Bragg, W. H. and Bragg, W. L. (1913a). The Reflexion of X-rays by Crystals. Proceedings of the Royal Society of London A, 88, 605, pp. 428–438.

Bragg, W. H. and Bragg, W. L. (1913b). The structure of the diamond. Nature, 91, pp. 557.

Broenniman, C., Eikenberry, E. F., Henrich, B., Horisberger, G., Huelsen, G., Pohl, E., Schmitt, B., Schulze-Briese, C., Suzuki, M., Tomizaki, T., Toyokawa, A. and Wagner, A. (2006) The Pilatus 1M detector. Journal of Synchrotron Radiation, 13, pp. 120-133. PMid:16495612

Bunkóczi, G., McCoy, A. J., Echols, N., Grosse-Kunstleve, R. W., Adams, P. D., Holton, J. M., Read, R. J. and Terwilliger, T. C. (2014). Macromolecular X-ray structure determination using weak, single-wavelength anomalous data. Nature Methods, 12, pp. 127–130. PMid:25532136 PMCid:PMC4312553

Burla, M. C., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. (2012). VLD algorithm and hybrid Fourier syntheses. Journal of Applied Crystallography, 45, pp. 1287-1294.

Caliandro, R., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C. and Siliqi, D. (2005a). Phasing at resolution higher than the experimental resolution. Acta Crystallographica, D61, 556-565.

Caliandro, R., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Siliqi, D. (2005b). Ab initio phasing at resolution higher than experimental resolution. Acta Crystallographica, D61, pp. 1080-1087.

Caliandro, R., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Mazzone, A., Siliqi, D. (2008). Crystal structure solution of small-to-medium-sized molecules at non-atomic resolution. Journal of Applied Crystallography, 41, pp. 548-553.

Champness, J. N., Bloomer, A. C., Bricogne, G., Butler, P. G. and Klug, A. (1976). The structure of the protein disk of tobacco mosaic virus to 5A resolution. Nature, 259, pp. 20-24. PMid:1250335

Cowtan, K. D. and Main, P. (1993). Improvement of macromolecular electron- density maps by the simultaneous application of real and reciprocal space constraints. Acta Crystallographica, D49, pp. 148-157.. PMid:15299555

Crowfoot, D., Bunn, C. W., Rogers-Low, B. W. and Turner-Jones, A. (1949). X-ray crystallographic investigation of the structure of penicillin. In Clarke, H. T., Johnson, J. R. and Robinson, R. (eds). Chemistry of Penicillin. Princeton University Press, pp. 310–367.

Crowther, R. A. and Blow, D. W. (1967) A Method of Positioning a Known Molecule in an Unknown Crystal Structure. Acta Crystallographica, 23, pp. 544-548.

Dauter Z. and Adamiak D. A. (2001). Anomalous signal of phosphorus used for phasing DNA oligomer: importance of data redundancy. Acta Crystallographica, D57, pp. 990–995.

Dauter, Z., Dauter, M., de La Fortelle, E., Bricogne, G. and Sheldrick, G. M. (1999). Can anomalous signal of sulfur become a tool for solving protein crystal structures? Journal of Molecular Biology, 289, pp. 83–92.

DeTitta, G. T., Weeks, C. M. , Thuman, P., Miller, R. and Hauptman, H. A. (1994). Structure solution by minimal function phase refinement and Fourier filtering: theoretical basis. Acta Crystallographica, A50, pp. 203-210.

DiMaio, F., Terwilliger, T. C., Read, R. J., Wlodawer, A., Oberdorfer, G., Wagner, U., Valkov, E., Alon, A., Fass, D., Axelrod, H. L., Das, D., Vorobiev, S. M., Iwai, H., Pokkuluri, P. R. and Baker, D. (2011). Improved molecular replacement by density- and energy-guided protein structure optimization. Nature, 473, pp. 540-543. PMid:21532589 PMCid:PMC3365536

Ewald, P. P. (1913). About the theory of the interference of X-rays in crystals (Zur Theorie der interferenzen der Röntgen-strahlen in kristallen). Physikalische Zeitschrift, 14, pp. 465–472.

Franklin, R. and Gosling, R. G. (1953). Molecular Configuration in Sodium Thymonucleate. Nature, 171, pp. 740-741. PMid:13054694

Friedrich, W., Knipping, P. and Laue, M. (1912). Interferenz-Erscheinungen bei Röntgenstrahlen. Sitzungsberichte der Königlich Bayerische Akademie der Wissenschaften, pp. 303–322.

Fujinaga, M. and Read, R. J. (1987). Experiences with a new translation-function program. Journal of Applied Crystallography, 20, pp. 517-521.

Garman, E. F. and Schneider, T. R. (1997). Macromolecular Cryocrystallography. Journal of Applied Crystallography, 30, pp. 211-237.

Giacovazzo, C. (2011). Fundamentals of crystallography (3rd ed). Oxford, New York: Oxford University Press - International Union of Crystallography texts on crystallography.

Glykos, N. M. and Kokkinidis, M. (2003). Structure determination of a small protein through a 23-dimensional molecular-replacement search. Acta Crystallographica, D59, pp. 709-718.

Green, D. W., Ingram, V. M. and Perutz, M. F. (1954). Structure of haemoglobin: IV. Sign determination by the isomorphous replacement method. Proceedings of the Royal Society of London. Series A, 225, pp. 287-307.

Hauptman, H. and Karle, J. (1953). Solution of the phase problem I. The centrosymmetric crystal. Dayton, Ohio: American Crystallographic Association.

Harker, D. (1936). The application of the three-dimensional Patterson method and the crystal structures of proustite, Ag3AsS3, and pyrargyrite, Ag3SbS3. The Journal of Chemical Physics, 4, pp. 381-390.

Harker, D. (1956). The determination of the phases of the structure factors of non-centrosymmetric crystals by the method of double isomorphous replacement. Acta Crystallographica, 9, pp. 1-9..

Harker, D. and Kasper, J. S. (1948). Phases of Fourier coefficients directly from crystal diffraction data. Acta Crystallographica, 1, pp. 70-75.

Harrison, S. C., Olson, A. J., Schutt, C. E., Winkler, F. K. and Bricogne, G. (1978). Tomato bushy stunt virus at 2.9 Å resolution. Nature, 276, pp. 368-373.

Hendrickson, W. A. (1991). Determination of Macromolecular Structures from Anomalous Diffraction of Synchrotron Radiation. Science, 254, pp. 51-58. PMid:1925561

Hendrickson, W. A. and Teeter, M. M. (1981). Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur. Nature, 290, pp. 107-113.

Hodgkin, D. C., Kamper, J., Mackay, M., Pickworth, J., Trueblood, K. N. and White, J. G. (1956). Structure of vitamin B-12. Nature, 178, pp. 64–66. PMid:13348621

Hope, H. (1990). Crystallography of biological macromolecules at ultra-low temperature. Annual Review of Biophysics and Biophysical Chemistry, 19, pp. 107-126. PMid:2194473

Huber, R. (1965). Die automatisierte Faltmoleku.lmethode. Acta Crystallographica, 19, pp. 353-356.

Jia-Xing, Y., Woolfson, M. M., Wilson, K. S. and Dodson, E. J. (2005). A modified ACORN to solve protein structures at resolutions of 1.7 Å or better. Acta Crystallographica, D61, pp. 1465-1475.

Karle, J. and Hauptman, H. (1950). The phases and magnitudes of the structure factors. Acta Crystallographica, 3, pp. 181-187.

Karle, J. and Hauptman, H. (1956). A theory of phase determination for the four types of non-centrosymmetric space groups 1P222, 2P22, 3P12, 3P22. Acta Crystallographica, 9, pp. 635-651.

Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H. and Phillips, D. C. (1958). A three dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature, 181, pp. 662-666. PMid:13517261

Kissinger, C. L., Gehlhaar, D. K. and Fogel, D. B. (1999). Rapid automated molecular replacement by evolutionary search. Acta Crystallographica, D55, pp. 484-491.

von Laue, M. (1912). Eine quantitative pru.fung der theorie fu.r die interferenz-erscheinungen bei Röntgenstrahlen. Sitzungsberichte der Königlich Bayerische Akademie der Wissenschaften, pp. 363-373.

Liu, Q., Dahmane, T., Zhang, Z., Assur, Z., Brasch, J., Shapiro, L., Mancia, F. and Hendrickson, W. A. (2012). Structures from Anomalous Diffraction of Native Biological Macromolecules. Science, 336, pp. 1033-1037. PMid:22628655 PMCid:PMC3769101

Loll, P. J., Bevivino A. E., Korty B. D. and Axelsen P. H. (1997). Simultaneous Recognition of a Carboxylate-containing Ligand and an Intramolecular Surrogate Ligand in the Crystal Structure of an Asymmetric Vancomycin Dimer. Journal of the American Chemical Society, 119, pp. 1516-1522.

McCoy A. J., Grosse-Kunstleve R. W., Storoni L. C. and Read R. J. (2005). Likelihood- enhanced fast translation functions. Acta Crystallographica, D61, pp. 458-464. PMid:15805601

McCoy A. J., Grosse-Kunstleve R. W., Adams P. D., Winn M. D., Storoni L. C. and Read R. J. (2007). Phaser crystallographic software. Journal of Applied Crystallography, 40, pp. 658-674. PMid:19461840 PMCid:PMC2483472

Miller, R., DeTitta, G. T., Jones, R. , Langs, D. A., Weeks, C. M. and Hauptman, H. A. (1993). On the application of the minimal principle to solve unknown structures. Science, 259, pp. 1430-1433. 8451639 PMid:8451639

Mueller, M., Wang, M. and Schulze-Briese, C. (2012). Optimal fine £X-slicing for single-photon-counting pixel detectors. Acta Crystallographica, D68, pp. 42–56. PMid:22194332 PMCid:PMC3245722

Oszlanyi, G. and, A. (2004). Ab initio structure solution by charge flipping. Acta Crystallographica, A60, pp. 134-141. PMid:14966324

Patterson, A. L. (1935). A direct method for the determination of the components of interatomic distances in crystals. Zeitschrift fu.r Kristallographie, 90, pp. 517-542.

Pauling, L. and Corey, R. B. (1951). The pleated sheet, a new layer configuration of polypeptide chains. Proceedings of the National Academy of Sciences of the USA, 37, pp. 251-256. PMid:14834147 PMCid:PMC1063350

Pauling, L., Corey, R. B. and Branson, H. R. (1951). The structure of proteins, two hydrogen-bonded helical configurations of the polypeptide chain. Proceedings of the National Academy of Sciences of the USA, 37, pp. 205-211.

Proepper, K., Meindl, K., Sammito, M., Dittrich, B., Sheldrick, G. M., Pohl, E. and Uson, I. (2014). Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries. Acta Crystallographica, D70, pp. 1743-1757. PMid:24914984 PMCid:PMC4051508

Qian, B., Raman, S., Das, R., Bradley, P., McCoy, A. J., Read, R. J. and Baker, D. (2007). High-resolution structure prediction and the crystallographic phase problem. Nature, 450, pp. 259-64. PMid:17934447 PMCid:PMC2504711

Robertson, M. P. and Scott, W. G. (2008). A general method for phasing novel complex RNA crystal structures without heavy-atom derivatives. Acta Crystallographica, D64, pp. 738-744. PMid:18566509 PMCid:PMC2507861

Rodríguez, D., Grosse, C., Himmel, S., González, C., Martínez de Ilarduya, I., Becker, S., Sheldrick, G. M. and Usón, I. (2009). Crystallographic ab initio protein solution below atomic resolution. Nature Methods, 6, pp. 651-653. PMid:19684596

Rossmann, M. G. (1972). The Molecular Replacement Method. New York: Gordon & Breach.

Rossmann, M. G. and Blow, D. M. (1962) The Detection of Subunits within the Crystallographic Asymmetric Unit. Acta Crystallographica, 15, pp. 24-31.

Sammito, M. D., Millán, C., Rodríguez, D., M. de Ilarduya, I., Meindl, K., De Marino, I., Petrillo, G., Buey, R. M., de Pereda, J. M., Zeth, K., Sheldrick, G. M. and Usón, I. (2013). Exploiting tertiary structure through local folds for crystallographic phasing. Nature Methods, 10, pp. 1099-1101. PMid:24037245

Sayre, D. (1952). The squaring method: a new method for phase determination. Acta Crystallographica, 5, pp. 60-65.

Schäfer, M., Schneider, T. R. and Sheldrick, G. M. (1996). Crystal structure of vancomycin. Structure, 4, pp. 1509-1515.

Sheldrick, G. M.and Gould, R. (1995). Structure solution by iterative peaklist optimization and tangent expansion in space group P1. Acta Crystallographica, B51, pp. 423-431.

Sheldrick, G. M. (2008). A short history of SHEL. Acta Crystallographica, A64, pp. 112-122. PMid:18156677

Sheldrick, G. M. (2010). Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallographica, D66, pp. 479-485. PMid:20383001 PMCid:PMC2852312

Sheldrick, G. M., Gilmore, C. J., Hauptman, H. A., Weeks, C. M., Miller, R. and Usón, I. (2011). Ab initio phasing. In Arnold, E., Himmel, D. M. and Rossmann, M. G. (eds.). International Tables for Crystallography. Dordrecht: Kluwer Academic Publishers, pp. 413-429.

Storoni L. C., McCoy A. J. and Read R. J. (2004). Likelihood-enhanced fast rotation functions. Acta Crystallographica, D60, pp. 432-438. PMid:14993666

Wang, B.-C. (1985). Resolution of phase ambiguity in macromolecular crystallography. Methods in Enzymology, 115, pp. 90-112.

Wang, A. H.-J., Quigley, G. J., Kolpak, F. J., Crawford, J. L., van Boom, J. H., van der Marel, G. and Rich, A. (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature, 282, pp. 680-686. PMid:514347

Watson, J. D. and Crick, F. H. C. (1953). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 171, pp. 737-738. PMid:13054692

Weeks, C. M., Adams, P. D., Berendzen, J., Bru.nger, A. T., Dodson E. J., Grosse-Kunstleve, R. W., Schneider, T. R., Sheldrick, G. M., Terwilliger, T. C., Turkenburg, M. and Usón, I. (2003). Automatic Solution of Heavy-Atom Substructures. Methods in Enzymology, 374, pp. 37-83.

Weinert, T., Olieric, V., Waltersperger, S., Panepucci, E., Chen, L., Zhang, H., Zhou, D., Rose, J., Ebihara, A., Kuramitsu, S., Li, D., Howe, N., Schnapp, G., Pautsch, A., Bargsten, K., Prota, A. E., Surana, P., Kottur, J., Nair, D. T., Basilico, F., Cecatiello, V., Pasqualato, S., Boland, A., Weichenrieder, O., Wang, B.-C., Steinmetz, M. O., Caffrey, M and Wang, M. (2015). Fast native-SAD phasing for routine macromolecular structure determination. Nature Methods, 12, pp. 131-133. PMid:25506719

Yang, C., Pflugrath, J. W., Courville, D. A., Stence, C. N. and Ferrara, J. D. (2003). Away from the edge: SAD phasing from the sulfur anomalous signal measured in-house with chromium radiation. Acta Crystallographica, D59, pp. 1943–1957.



Cómo citar

Millán, C., & Usón, I. (2015). Resolución de estructuras cristalográficas. Arbor, 191(772), a218.