CCP4 Software Suite: historia, evolución, contenido, retos y perspectivas de futuro

Autores/as

  • Eugene Krissinel Science and Technology Facilities Council

DOI:

https://doi.org/10.3989/arbor.2015.772n2006

Palabras clave:

CCP4, cristalografía macromolecular, colaboración, computación cristalográfica, conjunto de programas

Resumen


“Collaborative Computational Project Number 4 (CCP4)” en Cristalografía de Proteínas es un recurso público líder mundial, encaminado a producir y mantener un conjunto integrado de programas que permite a los investigadores determinar estructuras macromoleculares mediante cristalografía de rayos-X, así como por otras técnicas biofísicas. CCP4 va dirigido a la más amplia comunidad científica posible, abarcando investigaciones en el ámbito académico, tanto sin ánimo de lucro como con él. Sus objetivos principales incluyen el desarrollo y soporte de metodologías punteras para la determinación y análisis de estructuras de proteínas, integradas en un conjunto bien definido para facilitar su fácil difusión mundial. Además, CCP4 juega un papel importante en la formación y entrenamiento de científicos en biología estructural experimental. En este artículo, ofreceré una visión de conjunto de la larga historia e hitos técnicos de CCP4 (35 años) y consideraré cómo ha surgido la particular estructura colaborativa de CCP4, sus características más notables, estado actual y perspectivas futuras.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. and Zwart, P. H. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica, D66, pp. 213-221. http://dx.doi.org/10.1107/S0907444909052925 PMid:20124702 PMCid:PMC2815670

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. and Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28, 1, pp. 235-242. http://dx.doi.org/10.1093/nar/28.1.235

Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. and Leslie, A. G. W. (2011). iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallographica, D67, pp. 271-281. http://dx.doi.org/10.1107/S0907444910048675 PMid:21460445 PMCid:PMC3069742

Bibby, J., Keegan, R. M., Mayans, O., Winn, M. D. and Rigden, D. J. (2012). AMPLE: a cluster-and-truncate approach to solve the crystal structures of small proteins using rapidly computed ab initio models. Acta Crystallographica, D68, pp. 1622-1631. http://dx.doi.org/10.1107/S0907444912039194 PMid:23151627

Bruhn, J. F., Barnett, K. C., Bibby, J., Thomas, J. M. H., Keegan, R. M., Rigden, D. J., Bornhold, Z. A. and Saphire, E. O. (2014). Crystal Structure of the Nipah Virus Phosphoprotein Tetramerization Domain. Journal of Virology, 88, pp 758-762. http://dx.doi.org/10.1128/JVI.02294-13 PMid:24155387 PMCid:PMC3911761

CCP4 Documentation [on line]. Available from http://www.ccp4.ac.uk/docs.php Chothia, C. (1992). One thousand families for the molecular biologist. Nature, 357, pp. 543-544.

Collaborative Computational Project Number 4 (1994). The CCP4 Suite: programs for Protein Crystallography. Acta Crystallographica, D50, pp. 760-763. http://dx.doi.org/10.1107/S0907444994003112 PMid:15299374

Cowtan, K. (2003). The Clipper C++ libraries for X-ray crystallography. IUCr Computing Commission Newsletter, 2, pp. 4-9.

Cowtan, K. (2006). The Buccaneer software for automated model building. Acta Crystallographica, D62, pp. 1002-1011. http://dx.doi.org/10.1107/S0907444906022116 PMid:16929101

Global Phasing Ltd [on line]. Available from https://www.globalphasing.com de Graaff, R. A. G., Hilge, M., van der Plas, J. L. and Abrahams, J. P. (2001) Matrix methods for solving protein substructures of chlorine and sulfur from anomalous data. Acta Crystallographica, D57, pp. 1857–1862.

Emsley, P. and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallographica, D60, pp. 2126-2132. http://dx.doi.org/10.1107/S0907444904019158 PMid:15572765

Evans, P. (2006). Scaling and assessment of data quality. Acta Crystallographica, D62, pp. 72-82. http://dx.doi.org/10.1107/S0907444905036693 PMid:16369096

Evans, P. R. and Murshudov, G. N. (2013). How good are my data and what is the resolution? Acta Crystallographica, D69, pp. 1204-1214.

Golovin, A., Oldfield, T. J., Tate, J. G., Velankar, S., Barton, G. J., Boutselakis, H., Dimitropoulos, D., Fillo, J., Hussain A., Ionides, J. M., John, M., Keller, P. A., Krissinel, E., McNeill, P., Naim, A., Newman, R., Pajon, A., Pineda, J., Rachedi, A., Copeland, J., Sitnov, A., Sobhany, S., Suarez-Uruena, A., Swaminathan, G. J., Tagari, M., Tromm, S. Vranken, W and Henrick, K. (2004). E-MSD: an integrated data resource for bioinformatics. Nucleic Acids Research, 32, pp. D211-D216. http://dx.doi.org/10.1093/nar/gkh078 PMid:14681397 PMCid:PMC308812

Kabsch, W. (1993). Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. Journal of Applied Crystallography, 26, pp. 795–800. http://dx.doi.org/10.1107/S0021889893005588

Keegan, R. M. and Winn, M. D. (2008). MrBUMP: an automated pipeline for molecular replacement. Acta Crystallographica, D64, pp. 119-124. http://dx.doi.org/10.1107/S0907444907037195 PMid:18094475 PMCid:PMC2394800

Krissinel, E. B., Winn, M. D., Ballard, C. C., Ashton, A. W., Patel, P., Potterton, E. A., McNicholas, S. J., Cowtan, K. D. and Emsley, P. (2004). The new CCP4 Coordinate Library as a toolkit for the design of coordinate- related applications in protein crystallography. Acta Crystallographica, D60, pp. 2250-2255. http://dx.doi.org/10.1107/S0907444904027167 PMid:15572778

Krissinel, E. B. and Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallographica, D60, pp. 2256-2268. http://dx.doi.org/10.1107/S0907444904026460 PMid:15572779

Krissinel, E. B. and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology, 372, 3, pp. 774-797. http://dx.doi.org/10.1016/j.jmb.2007.05.022 PMid:17681537

Krissinel, E. B. and Evans, P. (2012). Interactive graphical viewer and browser for reflection data (ViewHKL). CCP4 Newsletter, 48.

Langer, G., Cohen, S. X., Lamzin, V. S. and Perrakis, A. (2008). Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nature Protocols, 3, pp. 1171-1179. http://dx.doi.org/10.1038/nprot.2008.91 PMid:18600222 PMCid:PMC2582149

Leslie, A. G. W. (2006). The integration of macromolecular diffraction data. Acta Crystallographica, D62, pp. 48-57. http://dx.doi.org/10.1107/S0907444905039107 PMid:16369093

Lebedev, A. A., Young, P., Isupov, M. N., Moroz, O. V., Vagin, A. A. and Murshudov, G.N. (2012). JLIgand: a graphical tool for the CCP4 template-restraint library. Acta Crystallographica, D68, pp. 431-440. http://dx.doi.org/10.1107/S090744491200251X PMid:22505263 PMCid:PMC3322602

Long, F., Vagin, A. A., Young, P. and Murshudov, G. N. (2008). BALBES: a molecular-replacement pipeline. Acta Crystallographica, D64, pp.125-132. http://dx.doi.org/10.1107/S0907444907050172 PMid:18094476 PMCid:PMC2394813

McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. and Read, R. J. (2007). Phaser crystallographic software. Journal of Applied Crystallography, 40, pp. 658-674. http://dx.doi.org/10.1107/S0021889807021206 PMid:19461840 PMCid:PMC2483472

Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F and Vagin, A. A. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica, D67, pp. 355-367. http://dx.doi.org/10.1107/S0907444911001314 PMid:21460454 PMCid:PMC3069751

Ness, S. R., de Graaf, R. A. G., Abrahams, J. P. and Pannu, N. S. (2004). Crank: New methods for automated macromolecular crystal structure solution. Structure, 12, pp. 1753-1761. http://dx.doi.org/10.1016/j.str.2004.07.018 PMid:15458625

Potterton, E., McNicholas, S., Krissinel, E. B., Cowtan, K. and Noble, M. (2002). The CCP4 molecular-graphics project. Acta Crystallographica, D58, pp. 1955-1957. http://dx.doi.org/10.1107/S0907444902015391

Potterton, E., Briggs, P., Turkenburg, M. and Dodson, E. (2003). A graphical user interface to the CCP4 program suite. Acta Crystallographica, D59, pp. 1131-1137. http://dx.doi.org/10.1107/S0907444903008126

Royal Society of Chemistry [on line]. Available from http://www.rsc.org.

Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica, A64, pp. 112-122. http://dx.doi.org/10.1107/S0108767307043930 PMid:18156677

Shortle, D., Simons, K. T. and Baker, D. (1998). Proceedings of National Academy of Sciences of the USA, 95, pp. 11158-11162.

Vagin, A. and Teplyakov, A. (1997). MOLREP: an Automated Program for Molecular Replacement. Journal of Applied Crystallography, 30, pp. 1022-1025. http://dx.doi.org/10.1107/S0021889897006766

Waterman, D. G., Winter, G., Parkhurst, J. M., Fuentes-Montero, L., Hattne, J., Brewster, A., Sauter, N. K., and Evans, G. (2013). The DIALS framework for integration software. CCP4 Newsletter, 49, pp. 16-19.

Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin A. and Wilson, K. S. (2011). Overview of the CCP4 suite and current developments. Acta Crystallographica, D67, pp. 235-242. http://dx.doi.org/10.1107/S0907444910045749 PMid:21460441 PMCid:PMC3069738

Winter, G. (2010). Xia2: an expert system for macromolecular crystallography data reduction. Journal of Applied Crystallography, 43, pp. 186-190. http://dx.doi.org/10.1107/S0021889809045701

Xu, D. and Zhang, Y. (2012). Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins, 80, pp. 1715-1735. http://dx.doi.org/10.1002/prot.24065

Publicado

2015-04-30

Cómo citar

Krissinel, E. (2015). CCP4 Software Suite: historia, evolución, contenido, retos y perspectivas de futuro. Arbor, 191(772), a220. https://doi.org/10.3989/arbor.2015.772n2006

Número

Sección

Artículos