Arbor, Vol 186, No 746 (2010)

Comportamiento colectivo de animales “swarming” y patrones complejos


https://doi.org/10.3989/arbor.2010.746n1252

J. A. Cañizo
Departament de Matemàtiques, Universitat Autònoma de Barcelona, España

J. Rosado
Departament de Matemàtiques, Universitat Autònoma de Barcelona, España

J. A. Carrillo
ICREA-Departament de Matemàtiques, Universitat Autònoma de Barcelona, España

Resumen


En esta nota repasamos algunos modelos basados en individuos para describir el movimiento colectivo de agentes, a lo que nos referimos usando la voz inglesa swarming. Estos modelos se basan en EDOs (ecuaciones diferenciales ordinarias) y muestran un comportamiento asintótico complejo y rico en patrones, que mostramos numéricamente. Además, comentamos cómo se conectan estos modelos de partículas con las ecuaciones en derivadas parciales para describir la evolución de densidades de individuos de forma continua. Las cuestiones matemáticas relacionadas con la estabilidad de de estos modelos de EDP's (ecuaciones en derivadas parciales) despiertan gran interés en la investigación en biología matemática.

Palabras clave


Swarming; movimiento colectivo; modelos basados en individuos; formación de patrones; límite de campo medio; teoría cinética

Texto completo:


PDF

Referencias


[1] I. Aoki. A Simulation Study on the Schooling Mechanism in Fish. Bulletin of the Japanese Society of Scientific Fisheries 48(8) (1982) 1081-1088.

[2] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, L. Giardina, L. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, V. Zdravkovic. Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study, preprint.

[3] A. Barbaro, K. Taylor, P. F. Trethewey, L. Youseff, B. Birnir. Discrete and continuous models of the dynamics of pelagic fish: application to the capelin, Mathematics and Computers in Simulation 79 (2009) 3397-3414. doi:10.1016/j.matcom.2008.11.018

[4] A. Barbaro, B. Einarsson, B. Birnir, S. Sigurthsson, H. Valdimarsson, O. K. Palsson, S. Sveinbjornsson, T. Sigurthsson. Modelling and simulations of the migration of pelagic fish, ICES J. Mar. Sci. 66(5) (2009) 826 - 838. doi:10.1093/icesjms/fsp067

[5] B. Birnir. An ODE model of the motion of pelagic fish, J. Stat. Phys. 128 (2007) 535-568. doi:10.1007/s10955-007-9292-2

[6] E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, New York (1999).

[7] M. Burger, V. Capasso, D. Morale. On an aggregation model with long and short range interactions, Nonlinear Analysis. Real World Applications. An International Multidisciplinary Journal 8 (2007) 939-958.

[8] S. Camazine, J.-L. Deneubourg, N.R. Franks, J. Sneyd, G. Theraulaz and E. Bonabeau. Self-Organization in Biological Systems, Princeton University Press (2003).

[9] J. A. Cañizo, J. A. Carrillo, J. Rosado. A well-posedness theory in measures for some kinetic models of collective motion, preprint UAB, http://mat.uab.cat/departament/.

[10] J. A. Carrillo, M. R. D'Orsogna, V. Panferov. Double milling in selfpropelled swarms from kinetic theory, Kinetic and Related Models 2 (2009) 363-378. doi:10.3934/krm.2009.2.363

[11] J.-A. Carrillo, M. Fornasier, J. Rosado, G. Toscani. Asymptotic Flocking Dynamics for the kinetic Cucker-Smale model, preprint UAB, http://mat.uab.cat/departament.

[12] Y.-L. Chuang, Y. R. Huang, M. R. D'Orsogna, A. L. Bertozzi. Multivehicle flocking: scalability of cooperative control algorithms using pairwise potentials, IEEE International Conference on Robotics and Automation (2007) 2292-2299.

[13] Y.-L. Chuang, M. R. D'Orsogna, D. Marthaler, A. L. Bertozzi, L. Chayes. State transitions and the continuum limit for a 2D interacting, self-propelled particle system, Physica D 232 (2007) 33-47. doi:10.1016/j.physd.2007.05.007

[14] I.D. Couzin, J. Krause, N.R. Franks, S.A. Levin. Effective leadership and decision making in animal groups on the move, Nature 433 (2005) 513-516. doi:10.1038/nature03236 PMid:15690039

[15] I. D. Couzin, J. Krause, R. James, G. Ruxton, N. Franks. Collective memory and spatial sorting in animal groups, Journal of Theoretical Biology 218(1) (2002) 1-11. doi:10.1006/jtbi.2002.3065 PMid:12297066

[16] F. Cucker, S. Smale. On the mathematics of emergence, Japan. J. Math. 2 (2007) 197-227. doi:10.1007/s11537-007-0647-x

[17] F. Cucker, S. Smale. Emergent behavior in flocks, IEEE Trans. Automat. Control 52 (2007) 852-862. doi:10.1109/TAC.2007.895842

[18] M. R. D'Orsogna, Y.-L. Chuang, A. L. Bertozzi, L. Chayes. Self-propelled particles with soft-core interactions: patterns, stability, and collapse, Phys. Rev. Lett. 96 (2006), 104302-1/4.

[19] R. Eftimie, G. de Vries, M. A. Lewis. Complex spati al group patterns result from different animal communication mechanisms, Proceedings of the National Academy of Sciences 104 (2007) 6974-6979. doi:10.1073/pnas.0611483104 PMid:17438269    PMCid:1855397

[20] G. Grégoire, H. Chaté. Onset of collective and cohesive motion, Phy. Rev. Lett. 92 (2004) 025702-1/4.

[21] S.-Y. Ha J.-G. Liu. A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, to appear in Comm. Math. Sci. 7 (2009) 297-325.

[22] S.-Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models 1 (2008) 415-435.

[23] S.-Y. Ha, T. Ha, J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings, preprint.

[24] C. K. Hemelrijk, H. Kunz. Density distribution and size sorting in fish schools: an individual-based model. Behavioral Ecology 16 (2005) 178-187. doi:10.1093/beheco/arh149

[25] C. K. Hemelrijk, H. Hildenbrandt. Self-Organized Shape and Frontal Density of Fish Schools. Ethology 114 (2008) 245-254. doi:10.1111/j.1439-0310.2007.01459.x

[26] H. Hildenbrandt, C. Carere, C. K. Hemelrijk, Self-organised complex aerial displays of thousands of starlings: a model.

[27] A. Huth, C. Wissel. The Simulation of the Movement of Fish Schools. Journal of Theoretical Biology 156 (1992) 365-385. doi:10.1016/S0022-5193(05)80681-2

[28] A.L. Koch, D. White. The social lifestyle of myxobacteria, Bioessays 20 (1998) 1030-1038. doi:10.1002/(SICI)1521-1878(199812)20:12<1030::AID-BIES9>3.3.CO;2-Z

[29] H. Kunz, C. K. Hemelrijk. Artificial fish schools: collective effects ofschool size, body size, and body form,z Artificial Life 9(3) (2003) 237-253. doi:10.1162/106454603322392451 PMid:14556686

[30] H. Kunz, T. Zu.blin, C. K. Hemelrijk. On prey grouping and predator confusion in artificial fish schools. Proceedings of the Tenth International Conference of Artificial Life. MIT Press, Cambridge, Massachusetts (2006).

[31] H. Levine, W.-J. Rappel, I. Cohen. Self-organization in systems of self-propelled particles, Phys. Rev. E 63 (2000) 017101-1/4.

[32] Y.X. Li, R. Lukeman, L. Edelstein-Keshet. Minimal mechanisms for school formation in self-propelled particles, Physica D 237 (2008) 699-720. doi:10.1016/j.physd.2007.10.009

[33] R. Lukeman, Y.X. Li and L. Edelstein-Keshet, A conceptual model for milling formations in biological aggregates, Bull Math Biol. 71 (2008) 352-382. doi:10.1007/s11538-008-9365-7 PMid:18855072

[34] A. Mogilner, L. Edelstein-Keshet, L. Bent, A. Spiros. Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol. 47 (2003) 353-389. doi:10.1007/s00285-003-0209-7 PMid:14523578

[35] J. Parrish, L. Edelstein-Keshet. Complexity, pattern, and evolutionary trade-offs in animal aggregation, Science 294 (1999) 99-101. doi:10.1126/science.284.5411.99 PMid:10102827

[36] L. Perea, G. Gómez, P. Elosegui. Extension of the Cucker-Smale control law to space flight formations, AIAA Journal of Guidance, Control, and Dynamics 32 (2009) 527-537. doi:10.2514/1.36269

[37] D. Ruelle. Statistical mechanics: Rigorous results, W. A. Benjamin, Inc., New York-Amsterdam (1969).

[38] T.C. Schneirla. Army Ants: A Study in Social Organization, W.H. Freeman 1971.

[39] J. Shen. Cucker-Smale Flocking under Hierarchical Leadership. SIAM J. Appl. Math. 68:3 (2008) 694-719. doi:10.1137/060673254

[40] H. Spohn. Large scale dynamics of interacting particles, Texts and Monographs in Physics, Springer (1991).

[41] C.M. Topaz A.L. Bertozzi. Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math. 65 (2004) 152-174. doi:10.1137/S0036139903437424

[42] C.M. Topaz, A.L. Bertozzi M.A. Lewis, A nonlocal continuum model for biological aggregation, Bulletin of Mathematical Biology 68 (2006) 1601-1623. doi:10.1007/s11538-006-9088-6 PMid:16858662

[43] T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen and O. Shochet. Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75 (1995) 1226-1229. doi:10.1103/PhysRevLett.75.1226 PMid:10060237

[44] S. V. Viscido, J. K. Parrish, D. Grünbaum. 2004. Individual behavior and emergent properties of fish schools: a comparison of observation and theory. Marine Ecology Progress Series 273 (2004) 239-249. doi:10.3354/meps273239

[45] S. V. Viscido, J. K. Parrish, D. Grünbaum. The effect of population size and number of influential neighbors on the emergent properties of fish schools. Ecological Modelling 183 (2005) 347-363. doi:10.1016/j.ecolmodel.2004.08.019

[46] C. Yates, R. Erban, C. Escudero, L. Couzin, J. Buhl, L. Kevrekidis, P. Maini, D. Sumpter, Inherent noise can facilitate coherence in collective swarm motion, Proceedings of the National Academy of Sciences 106 (14) (2009) 5464-5469. doi:10.1073/pnas.0811195106 PMid:19336580    PMCid:2667078

[47] L. M. Youseff, A. B. T. Barbaro, P. F. Trethewey, B. Birnir, J. Gilbert. Parallel modeling of fish interaction. Parallel Modeling of Fish Interaction, 11th IEEE International Conference on Computational Science and Engineering (2008) 234-241. doi:10.1109/CSE.2008.8




Copyright (c) 2010 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista arbor@csic.es

Soporte técnico soporte.tecnico.revistas@csic.es