Los caminos compartidos del tacto y el sonido hacia la emoción: Evidencias neurocientíficas actuales

Autores/as

DOI:

https://doi.org/10.3989/arbor.2023.810002

Palabras clave:

Música, emoción, vibro táctil

Resumen


La característica más representativa de la música es su capacidad de generar emoción. Pero ¿por qué la música emociona? En este artículo mostramos los conocimientos actuales de la teoría musical y la neurociencia que intentan explicar las relaciones que existen entre la música y las emociones. En primer lugar, se repasan los conocimientos actuales sobre el procesamiento de los sonidos musicales a nivel cerebral y las posibles explicaciones del origen de la emoción musical, así como la contribución de los distintos parámetros musicales a la generación de emociones, considerando estructuras musicales de nuestro mundo occidental. En segundo lugar, se presenta el canal táctil como un posible canal de transmisión de la emoción musical análogo al canal auditivo, pero con más limitaciones en la discriminación de frecuencias. Este acercamiento se produce desde la profunda fascinación que ejerce la música, con la esperanza de encontrar vías para explicar la transmisión de la emoción musical desde un canal alternativo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abad, Federico (2006). ¿Do re qué? Guía práctica de iniciación al lenguaje musical. Córdoba: Berenice.

Alves Araujo, Felipe; Lima Brasil, Fabricio; Candido Lima Santos, Allison; de Sousa Batista Junior, Lucenildo; Pereira Fonseca Dutra, Savio y Coelho Freire Batista, Carlos Eduardo (2017). Auris system: Providing vibrotactile feedback for hearing impaired population. BioMed Research International, 2017:2181380.

Argstatter, Heike (2016). Perception of basic emotions in music: Culture-specific or multicultural? Psychology of Music, 44(4), pp. 674-690.

Baijal, Anant; Kim, Julia; Branje, Carmen; Russo, Frank y Fels, Deborah (2012). Composing vibrotactile music: A multi-sensory experience with the emoti-chair. En Karon MacLean y Marcia K. O’Malley (eds.). The Haptics Symposium 2012. Vancouver, BC, Canada. March 4-7, 2012. Proceedings. Nueva Jersey: IEEE, pp. 509-515.

Balkwill, Laura-Lee; Thompson, William y Matsunaga, Rie (2004). Recognition of emotion in Japanese, Western, and Hindustani music by Japanese listeners. Japanese Psychological Research, 46 (4), pp. 337-349.

Bidelman, Gavin y Krishnan, Ananthanarayan (2009). Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem. The Journal of Neuroscience, 29 (42):13165-71.

Birnbaum, David M. (2007). Musical vibrotactile feedback [Tesis Doctoral inédita]. Mc Gill University: Montreal. Disponible en: https://escholarship.mcgill.ca/concern/theses/xd07gx894

Bowling, Daniel L. y Purves, Dale (2015). A biological rationale for musical consonance. Proceedings of the National Academy of Sciences, 112 (36) 11155-11160 201505768-.

Bresin, Roberto y Friberg, Anders (2011). Emotion rendering in music: Range and characteristic values of seven musical variables. Cortex, 47(9), pp. 1068-1081.

Brewster, Stephen A. y Brown, Lorna M. (2004). Non-visual information display using tactons. En Elizabeth Dykstra-Erickson y Manfred Tscheligi. CHI’04 extended abstracts on Human factors in computing systems, Vienna Austria April 24 - 29, 2004. Nueva York: Association for Computing Machinery, pp. 787-788.

Brown, Lorna M.; Brewster, Stephen A. y Purchase, Helen C. (2005). A first investigation into the effectiveness of tactons. En First joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Pisa, Italy, March 18-20, 2005. Los Alamitos: IEEE Computer Society, pp. 167-176.

Caetano, Gina y Jousmäki, Veiklo (2006). Evidence of vibrotactile input to human auditory cortex. NeuroImage, 29(1), pp. 15-28.

Cai, Yuexin; Zhao, Fei y Zheng, Yiqing (2013). Mechanisms of music perception and its changes in hearing impaired people. Hearing, Balance and Communication, 11(4), pp. 168-175.

Cavdir, Doga (2022). Touch, Listen, (Re)Act: Co-designing Vibrotactile Wearable Instruments for Deaf and Hard of Hearing. En: Proceedings of the International Conference on New Interfaces for Musical Expression. NIME 2022.

Celeghin, Alessia; Diano, Matteo; Bagnis, Arianna; Viola, Marco y Tamietto, Marco (2017). Basic emotions in human neuroscience: neuroimaging and beyond. Frontiers in Psychology, 8, 1432.

Cheung, Vincent K.; Meyer, Lars; Friederici, Angela D. y Koelsch, Stefan (2018). The right inferior frontal gyrus processes nested non-local dependencies in music. Scientific reports, 8(1), pp. 1-12.

Cheung, Vincent K.; Harrison, Peter M.; Meyer, Lars; Pearce, Marcus T.; Haynes, John-Dylan y Koelsch, Stefan (2019). Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and auditory cortex activity. Current Biology, 29 (23), pp. 4084-4092.

Convento, Silvia; Wegner-Clemens, Kira A. y Yau, Jeffrey M. (2019). Reciprocal interactions between audition and touch in flutter frequency perception. Multisensory Research, 32(1), pp. 67-85.

Crommett, Lexi E.; Pérez-Bellido, Alexis y Yau, Je M. (2017). Auditory adaptation improves tactile frequency perception. Journal of Neurophysiology, 117 (3), pp. 1352-1362.

Darrow, Alice-Ann (2006). The role of music in deaf culture: Deaf students’ perception of emotion in music. Journal of music therapy, 43(1), pp. 2-15.

De Guglielmo, Nicolas; Lobo, Cesar; Moriarty, Edward J.; Ma, Gloria y Dow, Douglas E. (2021). Haptic Vibrations for Hearing Impaired to Experience Aspects of Live Music. En Tadashi Nakano (ed.): Bio-Inspired Information and Communications Technologies: 13th EAI International Conference, BICT 2021, Virtual Event, September 1-2, 2021, Proceedings 13. Springer International Publishing, pp. 71-86.

Di Stefano, Nicola; Vuust, Peter y Brattico, Elvira (2022). Consonance and dissonance perception. A critical review of the historical sources, multidisciplinary findings, and main hypotheses. Physics of Life Reviews, 43, pp. 273-304.

Eerola, Tuomasy y Vuoskoski, Jonna K. (2011). A comparison of the discrete and dimensional models of emotion in music. Psychology of Music, 39 (1), pp. 18-49.

Eerola, Tuomas; Friberg, Anders y Bresin, Roberto (2013). Emotional expression in music: Contribution, linearity, and additivity of primary musical cues. Frontiers in Psychology, 4, article 487.

Eerola, Tuomas; Vuoskoski, Jonna K.; Peltola, Henan-Riikka; Putkinen, Vesay y Schäfer, Katharina (2018). An integrative review of the enjoyment of sadness associated with music. Physics of Life Reviews, 25, pp. 100-121.

Ekman, Paul (1992). Are there basic emotions? Psychological Review, 99(3), pp. 550-553.

Fang, Yingjie; Ou, Jing; Bryan-Kinns, Nick; Kang, Qingchun; Zhang, Junshuai y Guo, Bing (2021). Using Vibrotactile Device in Music Therapy to Support Wellbeing for People with Alzheimer’s Disease. En Francisco Rebelo (ed.). Advances in Ergonomics in Design: Proceedings of the AHFE 2021 Virtual Conference on Ergonomics in Design, July 25-29, 2021, USA. Springer International Publishing, pp. 353-361.

Fery, Madeline; Bernard, Corentin; Thoret, Etienne; Kronland-Martinet, Richard y Ystad, Solvi (2021). Audio-tactile perception of roughness. En Keiji Hirata, Satoshi Tojo y Tetsuro Kitahara (eds.). Music in the IA Era. Proceedings of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021. Springer, pp. 245-250.

Fletcher, Mark D. (2021). Can haptic stimulation enhance music perception in hearing-impaired listeners? Frontiers in Neuroscience, 15, 723877.

Fontana, Federico; Camponogara, Ivan; Cesari, Paola; Vallicella, Matteo y Ruzzenente, Marco (2016). An exploration on whole-body and foot-based vibrotactile sensitivity to melodic consonance. En Rolf Großmann y Georg Hajdu (eds.). Proceedings of SMC 2016. 13th Sound & Music Computing Conference 31.8.2016-3.9.2016, Hamburg, Germany. Hamburg: Zentrum für Mikrotonale Musik und Multimediale Komposition (ZM4), pp. 143-150.

Fritz, Thomas; Jentschke, Sebastian; Gosselin, Nathalie; Sammler, Daniela; Peretz, Isabelle; Turner, Robert; Friederici, Angela y Koelsch, Stefan (2009). Universal recognition of three basic emotions in music. Current Biology, 19 (7), pp. 573-576.

Frühholz, Sascha; Trost, Wiebke y Kotz, Sonja A. (2016). The sound of emotions-Towards a unifying neural network perspective of affective sound processing. Neuroscience y Biobehavioral Reviews, 68, pp. 96-110.

Gabrielsson, Alf y Lindström, Erik (2010). The role of structure in the musical expression of emotions. En Patrik N. Juslin y John A. Sloboda (eds.). Handbook of Music and Emotion: Theory, Research, Applications. Oxford: Oxford University Press, 367-400.

Gold, Benjamin P.; Pearce, Marcus T.; Mas-Herrero, Ernest; Dagher, Alain y Zatorre, Robert J. (2019). Predictability and uncertainty in the pleasure of music: a reward for learning? Journal of Neuroscience, 39(47), pp. 9397-9409.

Gorzelańczyk Edward; Podlipniak, Piotr; Walecki, Piotr; Karpiński, Maciej y Tarnowska, Emilia (2017). Pitch Syntax Violations Are Linked to Greater Skin Conductance Changes, Relative to Timbral Violations - The Predictive Role of the Reward System in Perspective of Cortico-subcortical Loops. Frontiers in Psychology, 8, article 586.

Good, Arla; Reed, Maureen J. y Russo, Frank A. (2014). Compensatory plasticity in the deaf brain: Effects on perception of music. Brain sciences, 4 (4), pp. 560-574.

Gosselin, Nathalie; Peretz, Isabelle; Johnsen, Erica y Adolphs, Ralph (2007). Amygdala damage impairs emotion recognition from music. Neuropsychologia, 45(2), pp. 236-244.

Gu, Simeng; Wang, Fushun; Patel, Nithes P.; Bourgeois, James A. y Huang, Jason H. (2019). A model for basic emotions using observations of behavior in Drosophila. Frontiers in Psychology, 10, article 781.

Gu, Simeng; Wang, Fushun; Cao, Caiyun; Wu, Erxi; Tang, Yi-Yuan y Huang, Jason H. (2019). An integrative way for studying neural basis of basic emotions with fMRI. Frontiers in Neuroscience, 13, article 628.

Hailstone, Julia C.; Omar, Rohani; Henley, Susie M. D.; Frost, Chris; Kenward, Michael G. y Warren, Jason D. (2009). It’s not what you play, it’s how you play it: Timbre affects perception of emotion in music. Quarterly Journal of Experimental Psychology, 62(11), pp. 2141-2155.

Haynes, Alice C.; Lawry, Jonathan; Kent, Christophery y Rossiter, Jonathan (2021). Feel Music: Enriching our emotive experience of music through audio-tactile mappings. Multimodal Technologies and Interaction, 5 (6), 29.

Hopkins, Carl; Maté-Cid, Saúl; Fulford, Robert; Seiffert, Gary y Ginsborg, Jane (2016). Vibrotactile presentation of musical notes to the glabrous skin for adults with normal hearing or a hearing impairment: Thresholds, dynamic range and high-frequency perception. Plos One, 11(5), e0155807.

Hopkins, Carl; Maté-Cid, Saúl; Fulford, Robert; Seiffert, Gary y Ginsborg, Jane (2023). Perception and learning of relative pitch by musicians using the vibrotactile mode. Musicae Scientiae, 27(1), pp. 3-26.

Huron, David (2006). Sweet anticipation. Music and the psychology of expectation. Cambridge, Massachusetts: The MIT Press.

Huron, David (2008). A comparison of average pitch height and interval size in major- and minor-key themes: evidence consistent with affect-related pitch prosody. Empirical Musicology Review, 3 (2), pp. 59-63.

Huang, Juan; Gamble, Darik; Sarnlertsophon, Kristine; Wang, Xiaoqin y Hsiao, Steven (2012). Feeling music: Integration of auditory and tactile inputs in musical meter perception. PloS One, 7(10), e48496.

Jack, Rachael; Garrod, Oliver B. y Schyns, Philippe (2014). Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time. Current Biology, 24 (2), pp. 187-192.

Jack, Robert; McPherson, Andrew y Stockman, Tony (2015). Designing tactile musical devices with and for deaf users: a case study. En Renee Timmers et al. (eds.) Proceedings of the International Conference on the Multimodal Experience of Music. 23-25 March 2015. Sheffield, UK, pp. 23-25.

Jack, Rachel E.; Sun, Wei; Delis, Ioannis; Garrod, Oliver G. y Schyns, Philippe G. (2016). Four not six: Revealing culturally common facial expressions of emotion. Journal of Experimental Psychology: General, 145(6), 708.

Jones, Lynette A. y Lederman, Susan J. (2007). Human Hand Function. Oxford: Oxford University Press.

Jones, Lynette A. y Singhal, Anshul (2018). Perceptual dimensions of vibrotactile actuators. En Katherine J. Kuchenbecker, Gregory J. Gerling y Yon Visell (eds.). Proceedings of the IEEE Haptics Symposium 2018, 25-28 March 2018. San Francisco, USA. IEEE, pp. 307-312.

Juslin, Patrik N. y Lindström, Erik. (2010). Musical expression of emotions: Modelling listeners’ judgements of composed and performed features. Music Analysis, 29(1-3), pp. 334-364.

Juslin, Patrik N. (2000). Cue utilization in communication of emotion in music performance: Relating performance to perception. Journal of Experimental Psychology: Human Perception and Performance, 26(6), pp. 1797-1812.

Juslin, Patrik N. (2013a). From everyday emotions to aesthetic emotions: Towards a unified theory of musical emotions. Physics of life reviews, 10(3), pp. 235-266.

Juslin, Patrik N. (2013b). What does music express? Basic emotions and beyond. Frontiers in psychology, 4, article 596.

Kayser, Christoph; Petkov, Christopher I.; Augath, Mark y Logothetis, Nikos K. (2005). Integration of touch and sound in auditory cortex. Neuron, 48(2), pp. 373-384.

Koelsch, Stefen; Skouras, Stavros; Fritz, Thomas; Herrera, Perfecti; Bonhage, Corinna; Küssner, Mats B. y Jacobs, Arthur M. (2013). The roles of superficial amygdala and auditory cortex in music-evoked fear and joy. NeuroImage, 81, pp. 49-60.

Koelsch, Stefan (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), pp. 170-180.

Koelsch, Stefan y Skouras, Stavros (2014). Functional centrality of amygdala, striatum and hypothalamus in a “small-world” network underlying joy: An fMRI study with music. Human brain mapping, 35(7), pp. 3485-3498.

Koelsch, Stefan; Skouras, Stavros y Lohmann, Gabriele (2018). The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy. PloS one, 13(1), e0190057.

Kosonen, Katri y Raisamo, Roope (2006). Rhythm perception through different modalities. En Peter Leškovský, Theresa Cooke, Marc Ernst y Matthias Harders (eds.). Proceedings of the EuroHaptics 2006, July 3-6, Paris, France. EuroHaptics Society, pp. 365-370.

Kragel, Philip y LaBar, Kevin (2016). Decoding the Nature of Emotion in the Brain. Trends in Cognitive Sciences, 20(6): pp. 444-455.

Lang, Peter y Bradley, Margaret (2010). Emotion and the motivational brain. Biological Psychology, 84(3):437-50.

Lang, Peter; Bradley, Margaret y Cuthbert, Bruce (1997). Motivated attention: Affect, activation, and action. En Peter J. Lang, Robert F. Simons y Marie. T. Balaban (ed.). Attention and orienting: Sensory and motivational processes. Nueva York: Taylor & Francis Group, pp. 97-135.

Lindquist, Kristeb; Wager, Tor; Kober, Hedy; Bliss-Moreau, Eliza y Barrett, Lisa (2012). The brain basis of emotion: A meta-analytic review. The Behavioural and Brain Sciences, 35(3), pp. 121-143.

Lonsdale, Adam y North, Adrian (2011) Why do we listen to Music? A Uses and Gratifications Analysis. British Journal of Psycholy, 102 (1), pp. 108-134.

Mariscal Rock. Redacción (12 de julio 2017). La “Plataforma Musical” Feel the Music! para personas con discapacidad auditiva llega al Garage Sound Festival. Mariscal Rock. Disponible en: https://mariskalrock.com/noticias/la-plataforma-musical-feel-the-music-para-personas-con-incapacidad-auditiva-llega-al-garage-sound-festival/

McDermott, Josh y Oxenham, Andrew (2008). Music perception, pitch, and the auditory system. Current Opinion in Neurobiology, 18(4):452-63.

Menninghaus, Winfried; Wagner, Valentin; Wassiliwizky, Eugen; Schindler, Ines; Hanich, Julian; Jacobsen, Thomas y Koelsch, Stefan (2019) What are aesthetic emotions? Psychological Review, 126(2): pp. 171-195.

Merchel, Sebastian y Altinsoy, M.Ercan (2018). Auditory-Tactile Experience of Music. En Stefano Papetti y Charalampos Saitis (eds.). Musical Haptics. Springer Series on Touch and Haptic Systems. Springer. Cham.

Mohn, Christine; Argstatter, Heike y Wilker, Friedrich-Wilhelm (2011). Perception of six basic emotions in music. Psychology of Music, 39(4), pp. 503-517.

Montagu, Jeremy (2017). How music and instruments began: A brief overview of the origin and entire development of music, from its earliest stages. Frontiers in Sociology, 2, article 8.

Mosabbir, AbdullahA.; Janzen, Thenile B.; Al Shirawi, Maryam; Rotzinger, Susan; Kennedy, Sidney H.; Farzan, Faranak; Meltzer, Jed y Bartel, Lee (2022). Investigating the effects of auditory and vibrotactile rhythmic sensory stimulation on depression: an EEG Pilot Study. Cureus, 14 (2), e22557.

Ortony, Andrew (2022). Are all “basic emotions” emotions? A problem for the (basic) emotions construct. Perspectives on psychological science, 17(1), pp. 41-61.

Papetti, Stefano; Järveläinen, Hanna y Schiesser, Sebastien (2021). Interactive vibrotactile feedback enhances the perceived quality of a surface for musical expression and the playing experience. IEEE Transactions on Haptics, 14 (3), pp. 635-645.

Paquette, Sébastien; Peretz, Isabel y Belin, Pascal (2013). The “Musical emotional bursts”: A validated set of musical affect bursts to investigate auditory affective processing. Frontiers in Psychology, 4, article 509.

Pehrs, Corinna; Deserno, Lorenzo; Bakels, Jan-Hendrik et al. (2014). How music alters a kiss: Superior temporal gyrus controls fusiform-amygdalar effective connectivity. Social Cognitive and Affective Neuroscience, 9(11), pp. 1770-1778.

Peretz, Isabelle; Aubé, William y Armony, Jorge L. (2013). Toward a neurobiology of musical emotions. En Ekart Altenmüller, Sabine Schmidt y Elke Zimmermann (eds.): Evolution of Emotional Communication. From Sounds in Nonhuman Mammals to speech and Music in Man. Oxford: Oxford University Press, pp. 277-299.

Polo, Nuria (8 de marzo de 2019). Las voces femeninas y su investigación. Sottovoce. Espacio virtual de divulgación científica sobre la voz humana. Disponible en: https://sottovoce.hypotheses.org/1656 (fecha de consulta: 31 de octubre de 2023).

Posner, Jonathan; Russell, James A. y Peterson, Bradley S. (2005). The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Development and Psychopathology, 17(3), pp. 715-734.

Rahman, Md SHoaubur; Barnes, Kelly Aanne; Crommett, Lexi E.; Tommerdahl, Mark y Yau, Jeffrey M. (2020). Auditory and tactile frequency representations are co-embedded in modality-defined cortical sensory systems. NeuroImage, 215, 116837.

Reybrouck, Mark; Vuust, Peter y Brattico, Elvira (2018). Brain connectivity networks and the aesthetic experience of music. Brain Sciences, 8(6), p. 107.

Remache-Vinueza, Byron et al. (2022). Mapping Monophonic MIDI Tracks to Vibrotactile Stimuli Using Tactile Illusions. En Charalampos Saitis, Ildar Farkhatdinov y Stefano Papetti (eds.). Haptic and Audio Interaction Design. HAID 2022. Lecture Notes in Computer Science, vol 13417. Springer.

Robinson, Jenefer (2020). Aesthetic emotions. The Monist, 103(2), pp. 205-222.

Rovan, Joseph y Hayward, Vinvcent (2000). Typology of tactile sounds and their synthesis in gesture-driven computer music performance. En M. Wanderley y Marc Battier (eds). Trends in gestural control of music. Paris: IRCAM, 297-320.

Russo, Frank A.; Ammirante, Paolo y Fels, Deborah I. (2012). Vibrotactile discrimination of musical timbre. Journal of Experimental Psychology: Human Perception and Performance, 38(4), pp. 822-826.

Sachs, Matthew; Ellis, Robert; Schlaug, Gottfried y Loui, Psyche (2016). Brain connectivity reflects human aesthetic responses to music. Social Cognitive and Affective Neuroscience, 11(6), pp. 884-891.

Saarimäki, Heini; Gotsopoulos, Athanasios; Jääskeläinen, Iiro P. et al. (2016). Discrete neural signatures of basic emotions. Cerebral cortex, 26(6), pp. 2563-2573.

Salimpoor, Valorie N.; Benovoy, Mitchel; Larcher, Kevin; Dagher, Alain y Zatorre, Robert J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), pp. 257-262.

Salimpoor, Valorie N.; van den Bosch, Iris; Kovacevic, Natasa; McIntosh, Anthony Randal, Dagher, Alain y Zatorre Robert J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340 (6129), pp. 216-219.

Sachs, Matthew E.; Damasio, Antonio y Habibi, Assal (2015). The pleasures of sad music: a systematic review. Frontiers in human neuroscience, 9, article 404.

Schmitz, Anastasia; Holloway, Catherine y Cho, Youngjun (2020). Hearing through vibrations: Perception of musical emotions by profoundly deaf people. arXiv preprint arXiv:2012.13265.

Schürmann, Martin; Caetano, Gina; Hlushchuk, Yevhen; Jousmäki, Veikko y Hari, Riita (2006). Touch activates human auditory cortex. NeuroImage, 30 (4), pp. 1325-1331.

Senabre, Marc (28 de mayo 2018). Breve historia de los sistemas de afinación. El Rincón Musicológico. Un blog sobre Musicología Empírica en español. Disponible en: https://musicologiaempirica.wordpress.com/2018/05/28/breve-historia-de-los-sistemas-de-afinacion/

Shany, Ofir; Singer, Neomi; Gold, Benjamin Paul; Jacoby, Nori; Tarrasch, Ricardo; Hendler, Talma y Granot, Roni (2019). Surprise-related activation in the nucleus accumbens interacts with music-induced pleasantness. Social Cognitive and Affective Neuroscience, 14(4), pp. 459-470.

Sierra, Miguel C.; Brunskog, Jonas y Marozeau, Jeremy (2021). An audio-tactile artinstallation for hearing impaired people. En Prithvi Ravi Kantan, Razvan Paisa y Silvin Willemsen (eds.). Proceedings of the 2nd Nordic Sound and Music Conference. November 11th - 12th, 2021. Zenodo, pp. 127-132.

Šimić Goran; Tkalčić Mladenka; Vukić, Vana; Mulc, Damir; Španić, Ena; Šagud, Marina; Olucha-Bordonau, Francisco; Vukšić, Mario y Hof, Patrik R. (2021). Understanding Emotions: Origins and Roles of the Amygdala. Biomolecules, 11(6), p. 823.

Sun, Qirui; Li, Shugin; Yao, Zhihao; Feng, Yuan-Ling y Mi, Haipeng (2021). PalmBeat: A Kinesthetic Way to Feel Groove With Music. En François Boyer, Jean-Marc Seigneur, Amine Choukou, Redha Taiar (eds.). AH 2021: 12th Augmented Human International Conference. Geneva Switzerland, May 27-28, 2021. Nueva York: Association for Computing Machinery, pp. 1-8.

Teie, David (2016). A comparative analysis of the universal elements of music and the fetal environment. Frontiers in Psychology, 7, article 758.

Touroutoglou, Alexandra; Lindquist, Kristen A.; Dickerson, Bradford C. y Barrett, Lisa Feldman (2015). Intrinsic connectivity in the human brain does not reveal networks for ‘basic’emotions. Social cognitive and affective neuroscience, 10(9), pp. 1257-1265.

Trainor Laurel; Tsang, Christine y Cheung, Vivian (2002). Preference for sensory consonance in 2- and 4-month-old infants. Music Perception, 20 (2), pp. 187-194.

Tranchant, Pauline; Shiell, Martha M.; Giordano, Marcello; Nadeau, Alexis; Peretz, Isabelle y Zatorre, Robert J. (2017). Feeling the beat: Bouncing synchronization to vibrotactile music in hearing and early deaf people. Frontiers in Neuroscience, 11, p. 507.

Trivedi, Urvish; Alqasemi, Redwan y Dubey, Rajiv (2019). Wearable musical haptic sleeves for people with hearing impairment. En Fillia Makedon (ed.). Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments. Nueva York: Association for Computing Machinery, pp. 146-151.

Turchet, Luca; West, Travis y Wanderley, Marcelo M. (2021). Touching the audience: musical haptic wearables for augmented and participatory live music performances. Personal and Ubiquitous Computing, 25, pp. 749-769.

Verma, Tushar; Aker, Scott C. y Marozeau, Jeremy (2023). Effect of vibrotactile stimulation on auditory timbre perception for normal-hearing listeners and cochlear-implant users. Trends in Hearing, 27, 23312165221138390.

Vieillard, Sandrine y Gilet, Anne-Laure. (2013). Age-related differences in affective responses to and memory for emotions conveyed by music: A cross-sectional study. Frontiers in Psychology, 4, p. 711.

Vieillard, Sandrine; Peretz, Isabelle; Gosselin, Nathalie; Khalfa, Stéphanie; Gagnon, Lise y Bouchard, Bernard (2008). Happy, sad, scary and peaceful musical excerpts for research on emotions. Cognition and Emotion, 22(4), pp. 720-752.

Vuust, Peter; Heggli, Ole A.; Friston, Karl J. y Kringelbach, Morten L. (2022). Music in the brain. Nature Reviews Neuroscience, 23(5), pp. 287-305.

Wang, Fushun; Yang, Jiongjiong.; Pan, Fang; Ho, Roger C. y Huang, Jason H. (2020). Editorial: Neurotransmitters and emotions. Frontiers in psychology, 11, p. 21.

Wang, Tianyan (2015). A hypothesis on the biological origins and social evolution of music and dance. Frontiers in Neuroscience, 9, 30.

West, Travis J.; Bachmayer, Alexandra; Bhagwati, Sandeep; Berzowska, Joanna y Wanderley, Marcelo M. (2019). The Design of the Body: Suit: Score, a Full-Body Vibrotactile Musical Score. En Sakae Yamamoto y Hirohiko Mori (eds.). Human Interface and the Management of Information. Information in Intelligent Systems Lecture Notes in Computer Science. Thematic Area, HIMI 2019, Held as Part of the 21st HCI International Conference, HCII 2019, Orlando, FL, USA, July 26-31, 2019, Proceedings, Part II. Nueva York: Springer Cham, pp. 70-89.

Wong, Patrick C. M.; Skoe, Erika;, Russo, Nicole et al. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat Neuroscience 10, pp. 420-422.

Yamazaki, Yusuke; Mitake, Hironori y Hasegawa, Shoichi (2016). Tension-based wearable vibroacoustic device for music appreciation. En Fernando Bello, Hiroyuki Kajimoto y Yon Visell (eds.). Haptics: Perception, Devices, Control, and Applications: 10 th International Conference, EuroHaptics 2016, London, UK, July 4-7, Part II 10. Springer International Publishing, pp. 273-283.

Yamazaki, Yusuke; Mitake, Hironori y Hasegawa, Shoichi (2022). Implementation of Tension-Based Compact Necklace-Type Haptic Device Achieving Widespread Transmission of Low-Frequency Vibrations. IEEE Transactions on Haptics, 15(3), pp. 535-546.

Yoo, Yongjae; Hwang, Inwooky y Choi, Seungmoon (2014). Consonance of vibrotactile chords. IEEE Transactions on Haptics, 7(1), pp. 3-13.

Young, Gareth W.; Murphy, Davidy y Weeter, Jeffrey (2015). Vibrotactile discrimination of pure and complex waveforms. En Joseph Timoney y Thomas Lysaght (eds.). Proceedings of the 12 th Sound and Music Computing Conference, 26 July-1 August, 2015, Maynooth, Co. Kildare, Ireland. Zenodo, pp. 359-362.

Zioga, Ioanna; Di Bernardi Luft, Caroline y Bhattacharya, Joydeep (2016). Musical training shapes neural responses to melodic and prosodic expectation. Brain Research, 1650, pp. 267-282.

Publicado

2023-12-30

Cómo citar

García López, Álvaro, Lucía Mulas, M. J., Ruiz Mezcua, B., & Sánchez Pena, J. M. (2023). Los caminos compartidos del tacto y el sonido hacia la emoción: Evidencias neurocientíficas actuales. Arbor, 199(810), a722. https://doi.org/10.3989/arbor.2023.810002

Número

Sección

Artículos