Los caminos compartidos del tacto y el sonido hacia la emoción: Evidencias neurocientíficas actuales

Autores/as

DOI:

https://doi.org/10.3989/arbor.2023.810002

Palabras clave:

Música, emoción, vibro táctil

Resumen


La característica más representativa de la música es su capacidad de generar emoción. Pero ¿por qué la música emociona? En este artículo mostramos los conocimientos actuales de la teoría musical y la neurociencia que intentan explicar las relaciones que existen entre la música y las emociones. En primer lugar, se repasan los conocimientos actuales sobre el procesamiento de los sonidos musicales a nivel cerebral y las posibles explicaciones del origen de la emoción musical, así como la contribución de los distintos parámetros musicales a la generación de emociones, considerando estructuras musicales de nuestro mundo occidental. En segundo lugar, se presenta el canal táctil como un posible canal de transmisión de la emoción musical análogo al canal auditivo, pero con más limitaciones en la discriminación de frecuencias. Este acercamiento se produce desde la profunda fascinación que ejerce la música, con la esperanza de encontrar vías para explicar la transmisión de la emoción musical desde un canal alternativo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abad, Federico (2006). ¿Do re qué? Guía práctica de iniciación al lenguaje musical. Córdoba: Berenice.

Alves Araujo, Felipe; Lima Brasil, Fabricio; Candido Lima Santos, Allison; de Sousa Batista Junior, Lucenildo; Pereira Fonseca Dutra, Savio y Coelho Freire Batista, Carlos Eduardo (2017). Auris system: Providing vibrotactile feedback for hearing impaired population. BioMed Research International, 2017:2181380. https://doi.org/10.1155/2017/2181380 PMid:29138749 PMCid:PMC5613463

Argstatter, Heike (2016). Perception of basic emotions in music: Culture-specific or multicultural? Psychology of Music, 44(4), pp. 674-690. https://doi.org/10.1177/0305735615589214

Baijal, Anant; Kim, Julia; Branje, Carmen; Russo, Frank y Fels, Deborah (2012). Composing vibrotactile music: A multi-sensory experience with the emoti-chair. En Karon MacLean y Marcia K. O'Malley (eds.). The Haptics Symposium 2012. Vancouver, BC, Canada. March 4-7, 2012. Proceedings. Nueva Jersey: IEEE, pp. 509-515. https://doi.org/10.1109/HAPTIC.2012.6183839

Balkwill, Laura-Lee; Thompson, William y Matsunaga, Rie (2004). Recognition of emotion in Japanese, Western, and Hindustani music by Japanese listeners. Japanese Psychological Research, 46 (4), pp. 337-349. https://doi.org/10.1111/j.1468-5584.2004.00265.x

Bidelman, Gavin y Krishnan, Ananthanarayan (2009). Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem. The Journal of Neuroscience, 29 (42):13165-71. https://doi.org/10.1523/JNEUROSCI.3900-09.2009 PMid:19846704 PMCid:PMC2804402

Birnbaum, David M. (2007). Musical vibrotactile feedback [Tesis Doctoral inédita]. Mc Gill University: Montreal. Disponible en: https://escholarship.mcgill.ca/concern/theses/xd07gx894

Bowling, Daniel L. y Purves, Dale (2015). A biological rationale for musical consonance. Proceedings of the National Academy of Sciences, 112 (36) 11155-11160 201505768-. https://doi.org/10.1073/pnas.1505768112 PMid:26209651 PMCid:PMC4568680

Bresin, Roberto y Friberg, Anders (2011). Emotion rendering in music: Range and characteristic values of seven musical variables. Cortex, 47(9), pp. 1068-1081. https://doi.org/10.1016/j.cortex.2011.05.009 PMid:21696717

Brewster, Stephen A. y Brown, Lorna M. (2004). Non-visual information display using tactons. En Elizabeth Dykstra-Erickson y Manfred Tscheligi. CHI'04 extended abstracts on Human factors in computing systems, Vienna Austria April 24 - 29, 2004. Nueva York: Association for Computing Machinery, pp. 787-788. https://doi.org/10.1145/985921.985936

Brown, Lorna M.; Brewster, Stephen A. y Purchase, Helen C. (2005). A first investigation into the effectiveness of tactons. En First joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Pisa, Italy, March 18-20, 2005. Los Alamitos: IEEE Computer Society, pp. 167-176. https://doi.org/10.1109/WHC.2005.6

Caetano, Gina y Jousmäki, Veiklo (2006). Evidence of vibrotactile input to human auditory cortex. NeuroImage, 29(1), pp. 15-28. https://doi.org/10.1016/j.neuroimage.2005.07.023 PMid:16168673

Cai, Yuexin; Zhao, Fei y Zheng, Yiqing (2013). Mechanisms of music perception and its changes in hearing impaired people. Hearing, Balance and Communication, 11(4), pp. 168-175. https://doi.org/10.3109/21695717.2013.839356

Cavdir, Doga (2022). Touch, Listen, (Re)Act: Co-designing Vibrotactile Wearable Instruments for Deaf and Hard of Hearing. En: Proceedings of the International Conference on New Interfaces for Musical Expression. NIME 2022.

Celeghin, Alessia; Diano, Matteo; Bagnis, Arianna; Viola, Marco y Tamietto, Marco (2017). Basic emotions in human neuroscience: neuroimaging and beyond. Frontiers in Psychology, 8, 1432. https://doi.org/10.3389/fpsyg.2017.01432 PMid:28883803 PMCid:PMC5573709

Cheung, Vincent K.; Meyer, Lars; Friederici, Angela D. y Koelsch, Stefan (2018). The right inferior frontal gyrus processes nested non-local dependencies in music. Scientific reports, 8(1), pp. 1-12. https://doi.org/10.1038/s41598-018-22144-9 PMid:29491454 PMCid:PMC5830458

Cheung, Vincent K.; Harrison, Peter M.; Meyer, Lars; Pearce, Marcus T.; Haynes, John-Dylan y Koelsch, Stefan (2019). Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and auditory cortex activity. Current Biology, 29 (23), pp. 4084-4092. https://doi.org/10.1016/j.cub.2019.09.067 PMid:31708393

Convento, Silvia; Wegner-Clemens, Kira A. y Yau, Jeffrey M. (2019). Reciprocal interactions between audition and touch in flutter frequency perception. Multisensory Research, 32(1), pp. 67-85. https://doi.org/10.1163/22134808-20181334 PMid:31059492 PMCid:PMC7294791

Crommett, Lexi E.; Pérez-Bellido, Alexis y Yau, Je M. (2017). Auditory adaptation improves tactile frequency perception. Journal of Neurophysiology, 117 (3), pp. 1352-1362. https://doi.org/10.1152/jn.00783.2016 PMid:28077668 PMCid:PMC5350269

Darrow, Alice-Ann (2006). The role of music in deaf culture: Deaf students' perception of emotion in music. Journal of music therapy, 43(1), pp. 2-15. https://doi.org/10.1093/jmt/43.1.2 PMid:16671835

De Guglielmo, Nicolas; Lobo, Cesar; Moriarty, Edward J.; Ma, Gloria y Dow, Douglas E. (2021). Haptic Vibrations for Hearing Impaired to Experience Aspects of Live Music. En Tadashi Nakano (ed.): Bio-Inspired Information and Communications Technologies: 13th EAI International Conference, BICT 2021, Virtual Event, September 1-2, 2021, Proceedings 13. Springer International Publishing, pp. 71-86. https://doi.org/10.1007/978-3-030-92163-7_7

Di Stefano, Nicola; Vuust, Peter y Brattico, Elvira (2022). Consonance and dissonance perception. A critical review of the historical sources, multidisciplinary findings, and main hypotheses. Physics of Life Reviews, 43, pp. 273-304. https://doi.org/10.1016/j.plrev.2022.10.004 PMid:36372030

Eerola, Tuomasy y Vuoskoski, Jonna K. (2011). A comparison of the discrete and dimensional models of emotion in music. Psychology of Music, 39 (1), pp. 18-49. https://doi.org/10.1177/0305735610362821

Eerola, Tuomas; Friberg, Anders y Bresin, Roberto (2013). Emotional expression in music: Contribution, linearity, and additivity of primary musical cues. Frontiers in Psychology, 4, article 487. https://doi.org/10.3389/fpsyg.2013.00487 PMid:23908642 PMCid:PMC3726864

Eerola, Tuomas; Vuoskoski, Jonna K.; Peltola, Henan-Riikka; Putkinen, Vesay y Schäfer, Katharina (2018). An integrative review of the enjoyment of sadness associated with music. Physics of Life Reviews, 25, pp. 100-121. https://doi.org/10.1016/j.plrev.2017.11.016 PMid:29198528

Ekman, Paul (1992). Are there basic emotions? Psychological Review, 99(3), pp. 550-553. https://doi.org/10.1037//0033-295X.99.3.550 PMid:1344638

Fang, Yingjie; Ou, Jing; Bryan-Kinns, Nick; Kang, Qingchun; Zhang, Junshuai y Guo, Bing (2021). Using Vibrotactile Device in Music Therapy to Support Wellbeing for People with Alzheimer's Disease. En Francisco Rebelo (ed.). Advances in Ergonomics in Design: Proceedings of the AHFE 2021 Virtual Conference on Ergonomics in Design, July 25-29, 2021, USA. Springer International Publishing, pp. 353-361. https://doi.org/10.1007/978-3-030-79760-7_43

Fery, Madeline; Bernard, Corentin; Thoret, Etienne; Kronland-Martinet, Richard y Ystad, Solvi (2021). Audio-tactile perception of roughness. En Keiji Hirata, Satoshi Tojo y Tetsuro Kitahara (eds.). Music in the IA Era. Proceedings of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021. Springer, pp. 245-250.

Fletcher, Mark D. (2021). Can haptic stimulation enhance music perception in hearing-impaired listeners? Frontiers in Neuroscience, 15, 723877. https://doi.org/10.3389/fnins.2021.723877 PMid:34531717 PMCid:PMC8439542

Fontana, Federico; Camponogara, Ivan; Cesari, Paola; Vallicella, Matteo y Ruzzenente, Marco (2016). An exploration on whole-body and foot-based vibrotactile sensitivity to melodic consonance. En Rolf Großmann y Georg Hajdu (eds.). Proceedings of SMC 2016. 13th Sound & Music Computing Conference 31.8.2016-3.9.2016, Hamburg, Germany. Hamburg: Zentrum für Mikrotonale Musik und Multimediale Komposition (ZM4), pp. 143-150.

Fritz, Thomas; Jentschke, Sebastian; Gosselin, Nathalie; Sammler, Daniela; Peretz, Isabelle; Turner, Robert; Friederici, Angela y Koelsch, Stefan (2009). Universal recognition of three basic emotions in music. Current Biology, 19 (7), pp. 573-576. https://doi.org/10.1016/j.cub.2009.02.058 PMid:19303300

Frühholz, Sascha; Trost, Wiebke y Kotz, Sonja A. (2016). The sound of emotions-Towards a unifying neural network perspective of affective sound processing. Neuroscience y Biobehavioral Reviews, 68, pp. 96-110. https://doi.org/10.1016/j.neubiorev.2016.05.002 PMid:27189782

Gabrielsson, Alf y Lindström, Erik (2010). The role of structure in the musical expression of emotions. En Patrik N. Juslin y John A. Sloboda (eds.). Handbook of Music and Emotion: Theory, Research, Applications. Oxford: Oxford University Press, 367-400. https://doi.org/10.1093/acprof:oso/9780199230143.003.0014

Gold, Benjamin P.; Pearce, Marcus T.; Mas-Herrero, Ernest; Dagher, Alain y Zatorre, Robert J. (2019). Predictability and uncertainty in the pleasure of music: a reward for learning? Journal of Neuroscience, 39(47), pp. 9397-9409. https://doi.org/10.1523/JNEUROSCI.0428-19.2019 PMid:31636112 PMCid:PMC6867811

Gorzelańczyk Edward; Podlipniak, Piotr; Walecki, Piotr; Karpiński, Maciej y Tarnowska, Emilia (2017). Pitch Syntax Violations Are Linked to Greater Skin Conductance Changes, Relative to Timbral Violations - The Predictive Role of the Reward System in Perspective of Cortico-subcortical Loops. Frontiers in Psychology, 8, article 586. https://doi.org/10.3389/fpsyg.2017.00586 PMid:28458648 PMCid:PMC5394172

Good, Arla; Reed, Maureen J. y Russo, Frank A. (2014). Compensatory plasticity in the deaf brain: Effects on perception of music. Brain sciences, 4 (4), pp. 560-574. https://doi.org/10.3390/brainsci4040560 PMid:25354235 PMCid:PMC4279142

Gosselin, Nathalie; Peretz, Isabelle; Johnsen, Erica y Adolphs, Ralph (2007). Amygdala damage impairs emotion recognition from music. Neuropsychologia, 45(2), pp. 236-244. https://doi.org/10.1016/j.neuropsychologia.2006.07.012 PMid:16970965

Gu, Simeng; Wang, Fushun; Patel, Nithes P.; Bourgeois, James A. y Huang, Jason H. (2019). A model for basic emotions using observations of behavior in Drosophila. Frontiers in Psychology, 10, article 781. https://doi.org/10.3389/fpsyg.2019.00781 PMid:31068849 PMCid:PMC6491740

Gu, Simeng; Wang, Fushun; Cao, Caiyun; Wu, Erxi; Tang, Yi-Yuan y Huang, Jason H. (2019). An integrative way for studying neural basis of basic emotions with fMRI. Frontiers in Neuroscience, 13, article 628. https://doi.org/10.3389/fnins.2019.00628 PMid:31275107 PMCid:PMC6593191

Hailstone, Julia C.; Omar, Rohani; Henley, Susie M. D.; Frost, Chris; Kenward, Michael G. y Warren, Jason D. (2009). It's not what you play, it's how you play it: Timbre affects perception of emotion in music. Quarterly Journal of Experimental Psychology, 62(11), pp. 2141-2155. https://doi.org/10.1080/17470210902765957 PMid:19391047 PMCid:PMC2683716

Haynes, Alice C.; Lawry, Jonathan; Kent, Christophery y Rossiter, Jonathan (2021). Feel Music: Enriching our emotive experience of music through audio-tactile mappings. Multimodal Technologies and Interaction, 5 (6), 29. https://doi.org/10.3390/mti5060029

Hopkins, Carl; Maté-Cid, Saúl; Fulford, Robert; Seiffert, Gary y Ginsborg, Jane (2016). Vibrotactile presentation of musical notes to the glabrous skin for adults with normal hearing or a hearing impairment: Thresholds, dynamic range and high-frequency perception. Plos One, 11(5), e0155807. https://doi.org/10.1371/journal.pone.0155807 PMid:27191400 PMCid:PMC4871541

Hopkins, Carl; Maté-Cid, Saúl; Fulford, Robert; Seiffert, Gary y Ginsborg, Jane (2023). Perception and learning of relative pitch by musicians using the vibrotactile mode. Musicae Scientiae, 27(1), pp. 3-26. https://doi.org/10.1177/10298649211015278

Huron, David (2006). Sweet anticipation. Music and the psychology of expectation. Cambridge, Massachusetts: The MIT Press. https://doi.org/10.7551/mitpress/6575.001.0001

Huron, David (2008). A comparison of average pitch height and interval size in major- and minor-key themes: evidence consistent with affect-related pitch prosody. Empirical Musicology Review, 3 (2), pp. 59-63. https://doi.org/10.18061/1811/31940

Huang, Juan; Gamble, Darik; Sarnlertsophon, Kristine; Wang, Xiaoqin y Hsiao, Steven (2012). Feeling music: Integration of auditory and tactile inputs in musical meter perception. PloS One, 7(10), e48496. https://doi.org/10.1371/journal.pone.0048496 PMid:23119038 PMCid:PMC3485368

Jack, Rachael; Garrod, Oliver B. y Schyns, Philippe (2014). Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time. Current Biology, 24 (2), pp. 187-192. https://doi.org/10.1016/j.cub.2013.11.064 PMid:24388852

Jack, Robert; McPherson, Andrew y Stockman, Tony (2015). Designing tactile musical devices with and for deaf users: a case study. En Renee Timmers et al. (eds.) Proceedings of the International Conference on the Multimodal Experience of Music. 23-25 March 2015. Sheffield, UK, pp. 23-25.

Jack, Rachel E.; Sun, Wei; Delis, Ioannis; Garrod, Oliver G. y Schyns, Philippe G. (2016). Four not six: Revealing culturally common facial expressions of emotion. Journal of Experimental Psychology: General, 145(6), 708. https://doi.org/10.1037/xge0000162 PMid:27077757

Jones, Lynette A. y Lederman, Susan J. (2007). Human Hand Function. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195173154.001.0001

Jones, Lynette A. y Singhal, Anshul (2018). Perceptual dimensions of vibrotactile actuators. En Katherine J. Kuchenbecker, Gregory J. Gerling y Yon Visell (eds.). Proceedings of the IEEE Haptics Symposium 2018, 25-28 March 2018. San Francisco, USA. IEEE, pp. 307-312. https://doi.org/10.1109/HAPTICS.2018.8357193

Juslin, Patrik N. y Lindström, Erik. (2010). Musical expression of emotions: Modelling listeners' judgements of composed and performed features. Music Analysis, 29(1-3), pp. 334-364. https://doi.org/10.1111/j.1468-2249.2011.00323.x

Juslin, Patrik N. (2000). Cue utilization in communication of emotion in music performance: Relating performance to perception. Journal of Experimental Psychology: Human Perception and Performance, 26(6), pp. 1797-1812. https://doi.org/10.1037/0096-1523.26.6.1797 PMid:11129375

Juslin, Patrik N. (2013a). From everyday emotions to aesthetic emotions: Towards a unified theory of musical emotions. Physics of life reviews, 10(3), pp. 235-266. https://doi.org/10.1016/j.plrev.2013.05.008 PMid:23769678

Juslin, Patrik N. (2013b). What does music express? Basic emotions and beyond. Frontiers in psychology, 4, article 596. https://doi.org/10.3389/fpsyg.2013.00596

Kayser, Christoph; Petkov, Christopher I.; Augath, Mark y Logothetis, Nikos K. (2005). Integration of touch and sound in auditory cortex. Neuron, 48(2), pp. 373-384. https://doi.org/10.1016/j.neuron.2005.09.018 PMid:16242415

Koelsch, Stefen; Skouras, Stavros; Fritz, Thomas; Herrera, Perfecti; Bonhage, Corinna; Küssner, Mats B. y Jacobs, Arthur M. (2013). The roles of superficial amygdala and auditory cortex in music-evoked fear and joy. NeuroImage, 81, pp. 49-60. https://doi.org/10.1016/j.neuroimage.2013.05.008 PMid:23684870

Koelsch, Stefan (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), pp. 170-180. https://doi.org/10.1038/nrn3666 PMid:24552785

Koelsch, Stefan y Skouras, Stavros (2014). Functional centrality of amygdala, striatum and hypothalamus in a "small-world" network underlying joy: An fMRI study with music. Human brain mapping, 35(7), pp. 3485-3498. https://doi.org/10.1002/hbm.22416 PMid:25050430 PMCid:PMC6869778

Koelsch, Stefan; Skouras, Stavros y Lohmann, Gabriele (2018). The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy. PloS one, 13(1), e0190057. https://doi.org/10.1371/journal.pone.0190057 PMid:29385142 PMCid:PMC5791961

Kosonen, Katri y Raisamo, Roope (2006). Rhythm perception through different modalities. En Peter Leškovský, Theresa Cooke, Marc Ernst y Matthias Harders (eds.). Proceedings of the EuroHaptics 2006, July 3-6, Paris, France. EuroHaptics Society, pp. 365-370.

Kragel, Philip y LaBar, Kevin (2016). Decoding the Nature of Emotion in the Brain. Trends in Cognitive Sciences, 20(6): pp. 444-455. https://doi.org/10.1016/j.tics.2016.03.011 PMid:27133227 PMCid:PMC4875847

Lang, Peter y Bradley, Margaret (2010). Emotion and the motivational brain. Biological Psychology, 84(3):437-50. https://doi.org/10.1016/j.biopsycho.2009.10.007 PMid:19879918 PMCid:PMC3612949

Lang, Peter; Bradley, Margaret y Cuthbert, Bruce (1997). Motivated attention: Affect, activation, and action. En Peter J. Lang, Robert F. Simons y Marie. T. Balaban (ed.). Attention and orienting: Sensory and motivational processes. Nueva York: Taylor & Francis Group, pp. 97-135.

Lindquist, Kristeb; Wager, Tor; Kober, Hedy; Bliss-Moreau, Eliza y Barrett, Lisa (2012). The brain basis of emotion: A meta-analytic review. The Behavioural and Brain Sciences, 35(3), pp. 121-143. https://doi.org/10.1017/S0140525X11000446 PMid:22617651 PMCid:PMC4329228

Lonsdale, Adam y North, Adrian (2011) Why do we listen to Music? A Uses and Gratifications Analysis. British Journal of Psycholy, 102 (1), pp. 108-134. https://doi.org/10.1348/000712610X506831 PMid:21241288

Mariscal Rock. Redacción (12 de julio 2017). La "Plataforma Musical" Feel the Music! para personas con discapacidad auditiva llega al Garage Sound Festival. Mariscal Rock. Disponible en: https://mariskalrock.com/noticias/la-plataforma-musical-feel-the-music-para-personas-con-incapacidad-auditiva-llega-al-garage-sound-festival/

McDermott, Josh y Oxenham, Andrew (2008). Music perception, pitch, and the auditory system. Current Opinion in Neurobiology, 18(4):452-63. https://doi.org/10.1016/j.conb.2008.09.005 PMid:18824100 PMCid:PMC2629434

Menninghaus, Winfried; Wagner, Valentin; Wassiliwizky, Eugen; Schindler, Ines; Hanich, Julian; Jacobsen, Thomas y Koelsch, Stefan (2019) What are aesthetic emotions? Psychological Review, 126(2): pp. 171-195. https://doi.org/10.1037/rev0000135 PMid:30802122

Merchel, Sebastian y Altinsoy, M.Ercan (2018). Auditory-Tactile Experience of Music. En Stefano Papetti y Charalampos Saitis (eds.). Musical Haptics. Springer Series on Touch and Haptic Systems. Springer. Cham. https://doi.org/10.1007/978-3-319-58316-7_7

Mohn, Christine; Argstatter, Heike y Wilker, Friedrich-Wilhelm (2011). Perception of six basic emotions in music. Psychology of Music, 39(4), pp. 503-517. https://doi.org/10.1177/0305735610378183

Montagu, Jeremy (2017). How music and instruments began: A brief overview of the origin and entire development of music, from its earliest stages. Frontiers in Sociology, 2, article 8. https://doi.org/10.3389/fsoc.2017.00008

Mosabbir, AbdullahA.; Janzen, Thenile B.; Al Shirawi, Maryam; Rotzinger, Susan; Kennedy, Sidney H.; Farzan, Faranak; Meltzer, Jed y Bartel, Lee (2022). Investigating the effects of auditory and vibrotactile rhythmic sensory stimulation on depression: an EEG Pilot Study. Cureus, 14 (2), e22557. https://doi.org/10.7759/cureus.22557 PMid:35371676 PMCid:PMC8958118

Ortony, Andrew (2022). Are all "basic emotions" emotions? A problem for the (basic) emotions construct. Perspectives on psychological science, 17(1), pp. 41-61. https://doi.org/10.1177/1745691620985415 PMid:34264141

Papetti, Stefano; Järveläinen, Hanna y Schiesser, Sebastien (2021). Interactive vibrotactile feedback enhances the perceived quality of a surface for musical expression and the playing experience. IEEE Transactions on Haptics, 14 (3), pp. 635-645. https://doi.org/10.1109/TOH.2021.3060625 PMid:33606637

Paquette, Sébastien; Peretz, Isabel y Belin, Pascal (2013). The "Musical emotional bursts": A validated set of musical affect bursts to investigate auditory affective processing. Frontiers in Psychology, 4, article 509. https://doi.org/10.3389/fpsyg.2013.00509 PMid:23964255 PMCid:PMC3741467

Pehrs, Corinna; Deserno, Lorenzo; Bakels, Jan-Hendrik et al. (2014). How music alters a kiss: Superior temporal gyrus controls fusiform-amygdalar effective connectivity. Social Cognitive and Affective Neuroscience, 9(11), pp. 1770-1778. https://doi.org/10.1093/scan/nst169 PMid:24298171 PMCid:PMC4221214

Peretz, Isabelle; Aubé, William y Armony, Jorge L. (2013). Toward a neurobiology of musical emotions. En Ekart Altenmüller, Sabine Schmidt y Elke Zimmermann (eds.): Evolution of Emotional Communication. From Sounds in Nonhuman Mammals to speech and Music in Man. Oxford: Oxford University Press, pp. 277-299. https://doi.org/10.1093/acprof:oso/9780199583560.003.0017

Polo, Nuria (8 de marzo de 2019). Las voces femeninas y su investigación. Sottovoce. Espacio virtual de divulgación científica sobre la voz humana. Disponible en: https://sottovoce.hypotheses.org/1656 (fecha de consulta: 31 de octubre de 2023).

Posner, Jonathan; Russell, James A. y Peterson, Bradley S. (2005). The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Development and Psychopathology, 17(3), pp. 715-734. https://doi.org/10.1017/S0954579405050340 PMid:16262989 PMCid:PMC2367156

Rahman, Md SHoaubur; Barnes, Kelly Aanne; Crommett, Lexi E.; Tommerdahl, Mark y Yau, Jeffrey M. (2020). Auditory and tactile frequency representations are co-embedded in modality-defined cortical sensory systems. NeuroImage, 215, 116837. https://doi.org/10.1016/j.neuroimage.2020.116837 PMid:32289461 PMCid:PMC7292761

Reybrouck, Mark; Vuust, Peter y Brattico, Elvira (2018). Brain connectivity networks and the aesthetic experience of music. Brain Sciences, 8(6), p. 107. https://doi.org/10.3390/brainsci8060107 PMid:29895737 PMCid:PMC6025331

Remache-Vinueza, Byron et al. (2022). Mapping Monophonic MIDI Tracks to Vibrotactile Stimuli Using Tactile Illusions. En Charalampos Saitis, Ildar Farkhatdinov y Stefano Papetti (eds.). Haptic and Audio Interaction Design. HAID 2022. Lecture Notes in Computer Science, vol 13417. Springer. https://doi.org/10.1007/978-3-031-15019-7_11

Robinson, Jenefer (2020). Aesthetic emotions. The Monist, 103(2), pp. 205-222. https://doi.org/10.1093/monist/onz036

Rovan, Joseph y Hayward, Vinvcent (2000). Typology of tactile sounds and their synthesis in gesture-driven computer music performance. En M. Wanderley y Marc Battier (eds). Trends in gestural control of music. Paris: IRCAM, 297-320.

Russo, Frank A.; Ammirante, Paolo y Fels, Deborah I. (2012). Vibrotactile discrimination of musical timbre. Journal of Experimental Psychology: Human Perception and Performance, 38(4), pp. 822-826. https://doi.org/10.1037/a0029046 PMid:22708743

Sachs, Matthew; Ellis, Robert; Schlaug, Gottfried y Loui, Psyche (2016). Brain connectivity reflects human aesthetic responses to music. Social Cognitive and Affective Neuroscience, 11(6), pp. 884-891. https://doi.org/10.1093/scan/nsw009 PMid:26966157 PMCid:PMC4884308

Saarimäki, Heini; Gotsopoulos, Athanasios; Jääskeläinen, Iiro P. et al. (2016). Discrete neural signatures of basic emotions. Cerebral cortex, 26(6), pp. 2563-2573. https://doi.org/10.1093/cercor/bhv086 PMid:25924952

Salimpoor, Valorie N.; Benovoy, Mitchel; Larcher, Kevin; Dagher, Alain y Zatorre, Robert J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), pp. 257-262. https://doi.org/10.1038/nn.2726 PMid:21217764

Salimpoor, Valorie N.; van den Bosch, Iris; Kovacevic, Natasa; McIntosh, Anthony Randal, Dagher, Alain y Zatorre Robert J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340 (6129), pp. 216-219. https://doi.org/10.1126/science.1231059 PMid:23580531

Sachs, Matthew E.; Damasio, Antonio y Habibi, Assal (2015). The pleasures of sad music: a systematic review. Frontiers in human neuroscience, 9, article 404. https://doi.org/10.3389/fnhum.2015.00404 PMid:26257625 PMCid:PMC4513245

Schmitz, Anastasia; Holloway, Catherine y Cho, Youngjun (2020). Hearing through vibrations: Perception of musical emotions by profoundly deaf people. arXiv preprint arXiv:2012.13265.

Schürmann, Martin; Caetano, Gina; Hlushchuk, Yevhen; Jousmäki, Veikko y Hari, Riita (2006). Touch activates human auditory cortex. NeuroImage, 30 (4), pp. 1325-1331. https://doi.org/10.1016/j.neuroimage.2005.11.020 PMid:16488157

Senabre, Marc (28 de mayo 2018). Breve historia de los sistemas de afinación. El Rincón Musicológico. Un blog sobre Musicología Empírica en español. Disponible en: https://musicologiaempirica.wordpress.com/2018/05/28/breve-historia-de-los-sistemas-de-afinacion/

Shany, Ofir; Singer, Neomi; Gold, Benjamin Paul; Jacoby, Nori; Tarrasch, Ricardo; Hendler, Talma y Granot, Roni (2019). Surprise-related activation in the nucleus accumbens interacts with music-induced pleasantness. Social Cognitive and Affective Neuroscience, 14(4), pp. 459-470. https://doi.org/10.1093/scan/nsz019 PMid:30892654 PMCid:PMC6523415

Sierra, Miguel C.; Brunskog, Jonas y Marozeau, Jeremy (2021). An audio-tactile artinstallation for hearing impaired people. En Prithvi Ravi Kantan, Razvan Paisa y Silvin Willemsen (eds.). Proceedings of the 2nd Nordic Sound and Music Conference. November 11th - 12th, 2021. Zenodo, pp. 127-132.

Šimić Goran; Tkalčić Mladenka; Vukić, Vana; Mulc, Damir; Španić, Ena; Šagud, Marina; Olucha-Bordonau, Francisco; Vukšić, Mario y Hof, Patrik R. (2021). Understanding Emotions: Origins and Roles of the Amygdala. Biomolecules, 11(6), p. 823. https://doi.org/10.3390/biom11060823 PMid:34072960 PMCid:PMC8228195

Sun, Qirui; Li, Shugin; Yao, Zhihao; Feng, Yuan-Ling y Mi, Haipeng (2021). PalmBeat: A Kinesthetic Way to Feel Groove With Music. En François Boyer, Jean-Marc Seigneur, Amine Choukou, Redha Taiar (eds.). AH 2021: 12th Augmented Human International Conference. Geneva Switzerland, May 27-28, 2021. Nueva York: Association for Computing Machinery, pp. 1-8. https://doi.org/10.1145/3460881.3460932

Teie, David (2016). A comparative analysis of the universal elements of music and the fetal environment. Frontiers in Psychology, 7, article 758. https://doi.org/10.3389/fpsyg.2016.01158 PMid:27555828 PMCid:PMC4977359

Touroutoglou, Alexandra; Lindquist, Kristen A.; Dickerson, Bradford C. y Barrett, Lisa Feldman (2015). Intrinsic connectivity in the human brain does not reveal networks for 'basic'emotions. Social cognitive and affective neuroscience, 10(9), pp. 1257-1265. https://doi.org/10.1093/scan/nsv013 PMid:25680990 PMCid:PMC4560947

Trainor Laurel; Tsang, Christine y Cheung, Vivian (2002). Preference for sensory consonance in 2- and 4-month-old infants. Music Perception, 20 (2), pp. 187-194. https://doi.org/10.1525/mp.2002.20.2.187

Tranchant, Pauline; Shiell, Martha M.; Giordano, Marcello; Nadeau, Alexis; Peretz, Isabelle y Zatorre, Robert J. (2017). Feeling the beat: Bouncing synchronization to vibrotactile music in hearing and early deaf people. Frontiers in Neuroscience, 11, p. 507. https://doi.org/10.3389/fnins.2017.00507 PMid:28955193 PMCid:PMC5601036

Trivedi, Urvish; Alqasemi, Redwan y Dubey, Rajiv (2019). Wearable musical haptic sleeves for people with hearing impairment. En Fillia Makedon (ed.). Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments. Nueva York: Association for Computing Machinery, pp. 146-151. https://doi.org/10.1145/3316782.3316796

Turchet, Luca; West, Travis y Wanderley, Marcelo M. (2021). Touching the audience: musical haptic wearables for augmented and participatory live music performances. Personal and Ubiquitous Computing, 25, pp. 749-769. https://doi.org/10.1007/s00779-020-01395-2

Verma, Tushar; Aker, Scott C. y Marozeau, Jeremy (2023). Effect of vibrotactile stimulation on auditory timbre perception for normal-hearing listeners and cochlear-implant users. Trends in Hearing, 27, 23312165221138390. https://doi.org/10.1177/23312165221138390 PMid:36789758 PMCid:PMC9932763

Vieillard, Sandrine y Gilet, Anne-Laure. (2013). Age-related differences in affective responses to and memory for emotions conveyed by music: A cross-sectional study. Frontiers in Psychology, 4, p. 711. https://doi.org/10.3389/fpsyg.2013.00711 PMid:24137141 PMCid:PMC3797547

Vieillard, Sandrine; Peretz, Isabelle; Gosselin, Nathalie; Khalfa, Stéphanie; Gagnon, Lise y Bouchard, Bernard (2008). Happy, sad, scary and peaceful musical excerpts for research on emotions. Cognition and Emotion, 22(4), pp. 720-752. https://doi.org/10.1080/02699930701503567

Vuust, Peter; Heggli, Ole A.; Friston, Karl J. y Kringelbach, Morten L. (2022). Music in the brain. Nature Reviews Neuroscience, 23(5), pp. 287-305. https://doi.org/10.1038/s41583-022-00578-5 PMid:35352057

Wang, Fushun; Yang, Jiongjiong.; Pan, Fang; Ho, Roger C. y Huang, Jason H. (2020). Editorial: Neurotransmitters and emotions. Frontiers in psychology, 11, p. 21. https://doi.org/10.3389/fpsyg.2020.00021 PMid:32116891 PMCid:PMC7025515

Wang, Tianyan (2015). A hypothesis on the biological origins and social evolution of music and dance. Frontiers in Neuroscience, 9, 30. https://doi.org/10.3389/fnins.2015.00030 PMid:25741232 PMCid:PMC4332322

West, Travis J.; Bachmayer, Alexandra; Bhagwati, Sandeep; Berzowska, Joanna y Wanderley, Marcelo M. (2019). The Design of the Body: Suit: Score, a Full-Body Vibrotactile Musical Score. En Sakae Yamamoto y Hirohiko Mori (eds.). Human Interface and the Management of Information. Information in Intelligent Systems Lecture Notes in Computer Science. Thematic Area, HIMI 2019, Held as Part of the 21st HCI International Conference, HCII 2019, Orlando, FL, USA, July 26-31, 2019, Proceedings, Part II. Nueva York: Springer Cham, pp. 70-89. https://doi.org/10.1007/978-3-030-22649-7_7

Wong, Patrick C. M.; Skoe, Erika;, Russo, Nicole et al. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat Neuroscience 10, pp. 420-422. https://doi.org/10.1038/nn1872 PMid:17351633 PMCid:PMC4508274

Yamazaki, Yusuke; Mitake, Hironori y Hasegawa, Shoichi (2016). Tension-based wearable vibroacoustic device for music appreciation. En Fernando Bello, Hiroyuki Kajimoto y Yon Visell (eds.). Haptics: Perception, Devices, Control, and Applications: 10 th International Conference, EuroHaptics 2016, London, UK, July 4-7, Part II 10. Springer International Publishing, pp. 273-283. https://doi.org/10.1007/978-3-319-42324-1_27

Yamazaki, Yusuke; Mitake, Hironori y Hasegawa, Shoichi (2022). Implementation of Tension-Based Compact Necklace-Type Haptic Device Achieving Widespread Transmission of Low-Frequency Vibrations. IEEE Transactions on Haptics, 15(3), pp. 535-546. https://doi.org/10.1109/TOH.2022.3176673 PMid:35604971

Yoo, Yongjae; Hwang, Inwooky y Choi, Seungmoon (2014). Consonance of vibrotactile chords. IEEE Transactions on Haptics, 7(1), pp. 3-13. https://doi.org/10.1109/TOH.2013.57 PMid:24845741

Young, Gareth W.; Murphy, Davidy y Weeter, Jeffrey (2015). Vibrotactile discrimination of pure and complex waveforms. En Joseph Timoney y Thomas Lysaght (eds.). Proceedings of the 12 th Sound and Music Computing Conference, 26 July-1 August, 2015, Maynooth, Co. Kildare, Ireland. Zenodo, pp. 359-362.

Zioga, Ioanna; Di Bernardi Luft, Caroline y Bhattacharya, Joydeep (2016). Musical training shapes neural responses to melodic and prosodic expectation. Brain Research, 1650, pp. 267-282. https://doi.org/10.1016/j.brainres.2016.09.015 PMid:27622645 PMCid:PMC5069926

Publicado

2023-12-30

Cómo citar

García López, Álvaro, Lucía Mulas, M. J., Ruiz Mezcua, B., & Sánchez Pena, J. M. (2023). Los caminos compartidos del tacto y el sonido hacia la emoción: Evidencias neurocientíficas actuales. Arbor, 199(810), a722. https://doi.org/10.3989/arbor.2023.810002

Número

Sección

Artículos