Phylogenetic reconstruction using algebraic geometry
DOI:
https://doi.org/10.3989/arbor.2010.746n1251Keywords:
molecular evolution, phylogenetic reconstruction, evolutionary model, algebraic varietyAbstract
A new approach to phylogenetic reconstruction has been emerging in the last years. Given an evolutionary model, the joint probability distribution of the nucleotides for these species satisfy some algebraic constraints called invariants. These invariants have theoretical and practical interest, since they can be used to infer phylogenies. In this paper, we explain how to use these invariants to design algorithms for phylogenetic reconstruction and we show how the application of tools and theoretical results coming from commutative algebra and algebraic geometry can improve the performance and the efficiency of these algorithms.
Downloads
References
E.S. Allman y J. A. Rhodes. “Phylogenetic ideals and vaalgoritmo for the general Markov model”, Adv. in Appl. Math., 40: 127-148, 2007. doi:10.1016/j.aam.2006.10.002
D. Barry y J. A. Hartigan. “Asynchronous distance between homologous DNA sequences”, Biometrics, 43(2): 261-276, 1987. doi:10.2307/2531811 PMid:3607200
P. Buneman. “The recovery of trees from measures of dissimilarity”, in Edinburgh University Press, editor, Mathematics in the Archaeological and Historical Sciences, pp. 387-395, 1971.
J. Cavender y J. Felsenstein. “Invariants of phylogenies in a simple case with discrete states”, J. Classification, 4: 57-71, 1987. doi:10.1007/BF01890075
M. Casanellas y J. Fernández-Sánchez. “Performance of a new invariants method on homogeneous and nonhomogeneous quartet trees”, Mol. Biol. Evol., 24(1): 288-293, 2007. PMid:17053050
M. Casanellas y J. Fernández-Sánchez. “Geometry of the Kimura 3-parameter model”, Adv. in Appl. Math, 41: 265-292, 2008. doi:10.1016/j.aam.2007.09.003
M. Casanellas y J. Fernández-Sánchez. Relevant phylogenetic invariants of evolutionary models, 2009. Aparecerá en J. Mathèmatiques Pures et Appliquées.
M. Casanellas, L. D. García y S. Sullivant. “Catalog of small trees”, in L. Pachter and B. Sturmfels, editors, Algebraic Statistics for computational biology, chapter 15, Cambridge University Press, 2005. Casanellas y S. Sullivant. “The strand symmetric model”, in L. Pachter and B. Sturmfels, editors, Algebraic Statistics for computational biology, chapter 16, Cambridge University Press, 2005.
J. Draisma y J. Kuttler. “On the ideals of equivariants tree models”, Mathematische Annalen, 344: 619-644, 2009. doi:10.1007/s00208-008-0320-6
N. Eriksson. “Tree construction using singular value decomposition”, in L. Pachter and B. Sturmfels, editors, Algebraic Statistics for computational biology, chapter 19, Cambridge University Press, pp. 347-358, 2005.
J. Felsenstein. “Evolutionary trees from DNA sequences: a maximum likelihood approach”, J. Mol. Evol., 17: 368-376, 1981. doi:10.1007/BF01734359 PMid:7288891
N. Galtier y M. Gouy. “Inferring pattern and process: maximum likelihood implementation of a non-homogeneous model of DNA sequence evolution for phylogenetic analysis”, Mol. Biol. Evol., 154(4): 871-879, 1998.
J. P. Huelsenbeck. “Performance of phylogentic methods in simulation”, Syst. Biol., 44: 17-48, 1995.
T. H. Jukes y C. R. Cantor. “Evolution of protein molecules”, in Mammalian Protein Metabolism, pp. 21-132, 1969.
M. Kimura. “A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences”, J. Mol. Evol., 16: 111-120, 1980. doi:10.1007/BF01731581 PMid:7463489
M. Kimura. “Estimation of evolutionary sequences between homologous nucleotide sequences”, Proc. Nat. Acad. Sci., USA, 78: 454-458, 1981. doi:10.1073/pnas.78.1.454
J. A. Lake. “A rate-independent technique for analysis of nucleaic acid sequences: evolutionary parsimony”, Mol. Biol. Evol., 4: 167-191, 1987. PMid:3447007
A. Rambaut y N. C. Grassly. “Seq-Gen: An application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees”, Comput. Appl. Biosci., 13: 235-238, 1997. PMid:9183526
D. Sankoff. “Designer invariants for large phylogenies”, Mol. Biol. Evol., 7: 255-269, 1990. PMid:1694257
N. Saitou y M. Nei. “The neighbor joining method: a new method for reconstructing phylogenetic trees”, Mol. Biol. Evol., 4(4): 406-425, 1987. PMid:3447015
B. Sturmfels y S. Sullivant. “Toric ideals of phylogenetic invariants”, J. Comput. Biol., 12: 204- 228, 2005. doi:10.1089/cmb.2005.12.204 PMid:15767777
M. A. Steel. “Recovering a tree from the leaf colourations it generates under a markov model”, Applied Mathematics Letters, 7: 19-24, 1994. doi:10.1016/0893-9659(94)90024-8
Z. Yang y A. D. Yoder. “Estimation of the transition/transversion rate bias and species sampling”, J. Mor. Evol., 48: 274-283, 1999. doi:10.1007/PL00006470 PMid:10093216
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2010 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.