Neutral networks of genotypes: evolution behind the curtain

Authors

  • Susanna C. Manrubia Centro de Astrobiología, CSIC-INTA
  • José A. Cuesta Grupo Interdisciplinar de Sistemas Complejos (GISC). Dept. de Matemáticas. Universidad Carlos III

DOI:

https://doi.org/10.3989/arbor.2010.746n1253

Keywords:

Neutral network, genotype-phenotype map, redundancy, adaptation, fitness landscape

Abstract


Our understanding of the evolutionary process has gone a long way since the publication, 150 years ago, of “On the origin of species” by Charles R. Darwin. The XXth Century witnessed great efforts to embrace replication, mutation, and selection within the framework of a formal theory, able eventually to predict the dynamics and fate of evolving populations. However, a large body of empirical evidence collected over the last decades strongly suggests that some of the assumptions of those classical models necessitate a deep revision. The viability of organisms is not dependent on a unique and optimal genotype. The discovery of huge sets of genotypes (or neutral networks) yielding the same phenotype –in the last term the same organism–, reveals that, most likely, very different functional solutions can be found, accessed and fixed in a population through low-cost exploration of the space of genomes. The “evolution behind the curtain’ may be the answer to some of the current puzzles that evolutionary theory faces, like the fast speciation process that is observed in the fossil record after very long stasis periods.

Downloads

Download data is not yet available.

References

Aguirre, J., Buldú, J. M., and Manrubia, S. C. (2009): “Evolutionary dynamics on networks of selectively neutral genotypes: Effects of topology and sequence stability”, Phys. Rev. E, 80:066112. doi:10.1103/PhysRevE.80.066112

Ancel, L. W. and Fontana, W. (2000): “Plasticity, evolvability and modularity in RNA”, J. Exp. Zool. (Mol. Dev. Evol.), 288: 242.

Anderson, P. C. and Mecozzi, S. (2005): “Unusually short RNA sequences: Design of 13-mer. RNA that selectively binds and recognizes theophylline”, J. Am. Chem. Soc., 127: 5290. doi:10.1021/ja0432463 PMid:15826145

Barton, N. H. and Coe, J. B. (2009): “On the application of statistical physics to evolutionary biology”, J. Theor. Biol., 259:317-324. doi:10.1016/j.jtbi.2009.03.019 PMid:19348811

Blythe, R. A. and McKane, A. J. (2007): “Stochastic models of evolution in genetics, ecology and linguistics”, J. Stat. Mech., july: P07018.

Darwin, C. R. (1859): On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, John Murray, London, 1st ed.

Domingo, E., Sabo, D., Taniguchi, T., and Weissmann, C. (1978): “Nucleotidesequence heterogeneity of an RNAphage population”, Cell, 13: 735. doi:10.1016/0092-8674(78)90223-4

Duarte, E. A.; Novella, I. S.; Ledesma, S.; Clarke, D. K.; Moya, A.; Elena, S. F.; Domingo, E. and Holland, J. J. (1994): “Subclonal components of consensus fitness in an RNA virus clone”, J. Virology, 6: 4295.

Eigen, M. (1971): “Selforganization of matter and evolution of biological macromolecules”, Naturwissenschaften, 58: 465. doi:10.1007/BF00623322 PMid:4942363

Eldredge, N. and Gould, S. J. (1972): “Punctuated equilibria: an alternative to phyletic gradualism”, in Schopf, T. J. M., editor, Models in Paleobiology, pages 82-115. Freeman Cooper, San Francisco.

Ewens, W. J. (2004): Mathematical Population Genetic. I. Theoretical introduction, Springer, 2nd edition.

Fontana, W. (2002): “Modelling ’evo-devo’ with RNA”, BioEssays, 24: 1164. doi:10.1002/bies.10190 PMid:12447981

Fontana, W. and Schuster, P. (1998): “Continuity in evolution: On the nature of transitions”, Science, 280: 1451-1455. doi:10.1126/science.280.5368.1451 PMid:9603737

Galton, F. (1886): “Regression towards mediocrity in hereditary stature”, J. Anthrop. Inst., 15: 246-263.

Gould, S. J. (2002): The structure of evolutionary theory, Belknap Press of Harvard University Press.

Gru.ner, W.; Giegerich, R.; Strothmann, D.; Reidys, C.; Weber, J.; Hofacker, I. L.; Stadler, P. F. and Schuster, P. (1996): “Analysis of RNA sequence structure maps by exhaustive enumeration. II. Structures of neutral networks and shape space covering”, Monatshefte Chem., 127: 375-389.

Huxley, J. S. (1942): Evolution: The Modern Synthesis, Allen and Unwin.

Kimura, M. (1968): “Evolutionary rate at the molecular level”, Nature, 217.

Koelle, K.; Cobey, S.; Grenfell, B. and Pascual, M. (2006): “Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans”, Science, 314: 1898-1903. doi:10.1126/science.1132745 PMid:17185596

Mayr, E. (1985): The growth of biological thought, Belknap Press of Harvard University Press.

Mendel, G. (1866): “Versuche über Pflanzen-Hybriden”, Verh. Naturforsh. Ver. Brünn, 4: 3-47.

Muller, H. J. (1932): “Some genetic aspects of sex”, Amer. Nat., 66: 118-138. doi:10.1086/280418

Reidys, C. M. and Stadler, P. F. (2002): “Combinatorial landscapes”, SIAM Rev., 44: 3-54. doi:10.1137/S0036144501395952

Schultes, E. A. and Bartel, D. P. (2000): “One sequence, two ribozymes: Implications for the emergence of new ribozyme folds”, Science, 289: 448-452. doi:10.1126/science.289.5478.448 PMid:10903205

Schuster, P. (2006): “Prediction of RNA secondary structures: from theory to models and real molecules”, Rep. Prog. Phys., 69: 1419. doi:10.1088/0034-4885/69/5/R04

Schuster, P.; Fontana, W.; Stadler, P. F. and Hofacker, I. L. (1994): “From sequences to shapes and back: A case study in RNA secondary structures”, Proc. Roy. Soc. London B, 255: 279. doi:10.1098/rspb.1994.0040 PMid:7517565

Sella, G. and Hirsh, A. E. (2005): “The application of statistical physics to evolutionary biology”, Proc. Nat. Acad. Sci. USA, 102: 9541-9546. doi:10.1073/pnas.0501865102 PMid:15980155    PMCid:1172247

Stich, M., Briones, C., and Manrubia, S. C. (2008): “On the structural repertoire of pools of short, random RNA sequences”, J. Theor. Biol., 252: 750-763. doi:10.1016/j.jtbi.2008.02.018 PMid:18374951

van Nimwegen, E.; Crutchfield, J. P. and Huynen, M. (1999): “Neutral evolution of mutational robustness”, Proc. Natl. Acad. Sci. USA, 96: 9716-9720. doi:10.1073/pnas.96.17.9716

Waterman, M. S. and Smith, T. F. (1978): “RNA secondary structure - Complete mathematical analysis”, Math. Biosci., 42: 257. doi:10.1016/0025-5564(78)90099-8

Downloads

Published

2010-12-30

How to Cite

Manrubia, S. C., & Cuesta, J. A. (2010). Neutral networks of genotypes: evolution behind the curtain. Arbor, 186(746), 1051–1064. https://doi.org/10.3989/arbor.2010.746n1253

Issue

Section

Articles