Biocatalysis and biotechnology
DOI:
https://doi.org/10.3989/arbor.2014.768n4010Keywords:
Biocatalysis, enzymes, immobilization, enzyme technology, synthesis, industryAbstract
Biocatalysis has emerged as a rich field within Biotechnology, enabling the application of enzymes in a wide range of industries ranging from pharmaceuticals and fine chemicals to food and energy. This striking development of Biocatalysis is due to novel technologies such as bioinformatics, high-throughput screening (HTS), directed evolution, as well as other well-established techniques such as enzyme immobilization and protein engineering or medium engineering. Sustainable manufacturing is a major driver of Biocatalysis, which will provide many real challenges and opportunities for the future. In this article, some of the main methods in enzyme technology have been reviewed, as well as several biotechnological applications of enzymes in industry. Finally, a brief overview of the situation of Biocatalysis in both Spanish academia and industry has also been reported.
Downloads
References
Aehle, W. (ed.) (2007). Enzymes in industry. Production and applications. Weinheim: Wiley-VCH. http://dx.doi.org/10.1002/9783527617098
Arroyo, M. (2001).Tecnología enzimática aplicada. Madrid: Editorial de la Universidad Complutense.
Bommarius, A. S. y Riebel-Bommarius, B.R. (2004). Biocatalysis: Fundamentals and Applications. Weinheim: Wiley-VCH. http://dx.doi.org/10.1002/3527602364
Bornscheuer, U. T., Huisman, G. W., Kazlauskas, R. J., Lutz, S., Moore, J. C. y Robins, K. (2012). Engineering the third wave of biocatalysis. Nature, 485, pp. 185-194. http://dx.doi.org/10.1038/nature11117 PMid:22575958
Buchholz, K., Kasche, V. y Bornscheuer, U.T. (2005). Biocatalysts and enzyme technology. Weinheim: Wiley-VCH.
Cao, L. (2005). Carrier-bound immobilized enzymes: principles, application and design. Weinheim: Wiley-VCH. http://dx.doi.org/10.1002/3527607668
Carrea, G. y Riva, S. (eds.) (2008). Organic synthesis with enzymes in non-aqueous media. Weinheim: Wiley-VCH. http://dx.doi.org/10.1002/9783527621729
Davids, T., Schmidt, M., Boettcher, D. y Bornscheuer, U.T. (2013). Strategies for the discovery and engineering of enzymes for biocatalysis. Current Opinion in Chemichal Biology, 17, pp. 215-220. http://dx.doi.org/10.1016/j.cbpa.2013.02.022 PMid:23523243
DiCosimo, R., McAuliffe, J., Poulose, A.J. y Bohlmann, G. (2013). Industrial use of immobilized enzymes. Chemichal Society Reviews, 42, pp.6437-6474. http://dx.doi.org/10.1039/c3cs35506c PMid:23436023
Kumar, A. y Singh, S. (2013). Directed evolution: tailoring biocatalysts for industrial applications. Critical Reviews in Biotechnology, 33, pp. 365-378. http://dx.doi.org/10.3109/07388551.2012.716810 PMid:22985113
Miyazaki, K; Wintrode, P. L., Grayling, R. A., Rubingh, D. N. y Arnold, F. H. (2000). Directed evolution study of temperature adaptation in a psychrophilic enzyme. Journal of Molecular Biology, 297, pp. 1015-1026. http://dx.doi.org/10.1006/jmbi.2000.3612 PMid:10736234
Patel, R.N. (ed.) (2006). Biocatalysis in the pharmaceutical and biotechnology industries. Florida: CRC Press.
Polaina, J. y MacCabe, A. P. (eds.) (2007). Industrial enzymes: Structure, function and applications. Dordrecht: Springer. http://dx.doi.org/10.1007/1-4020-5377-0
Pollard, D.J. y Woodley, J.M. (2007). Biocatalysis for pharmaceutical intermediates: the future is now. Trends in Biotechnology, 25, pp. 66-73. http://dx.doi.org/10.1016/j.tibtech.2006.12.005 PMid:17184862
Rastall, L. (ed.) (2007). Novel enzyme technology for food applications. Cambridge: Woodhead Publishing Limited.
Sheldon, R.A. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Synthesis & Catalisis, 349, pp. 1289-1307. http://dx.doi.org/10.1002/adsc.200700082
Sheldon, R. A. y van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chemical Society Reviews, 42, pp. 6223-6235. http://dx.doi.org/10.1039/c3cs60075k PMid:23532151
Turner, N.J. (2009). Directed evolution drives the next generation of biocatalysts. Nature Chemichal Biology, 5, pp. 568-574. http://dx.doi.org/10.1038/nchembio.203 PMid:19620998
Rantwijk, F. van y Sheldon, R.A. (2007). Biocatalysisin ionic liquids. Chemichal Reviews, 107, pp. 2757-2785. http://dx.doi.org/10.1021/cr050946x PMid:17564484
Woodley, J.M. (2008). New opportunities for biocatalysis: making pharmaceutical processes greener. Trends in Biotechnology, 26, pp. 321-327. http://dx.doi.org/10.1016/j.tibtech.2008.03.004 PMid:18436317
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.