Las leguminosas en alimentación animal

Autores/as

  • Luis A. Rubio Consejo Superior de Investigaciones Científicas
  • Eduarda Molina Consejo Superior de Investigaciones Científicas

DOI:

https://doi.org/10.3989/arbor.2016.779n3005

Palabras clave:

Leguminosas-grano, monogástricos, rumiantes, valor nutritivo, metabolitos secundarios

Resumen


Desde el punto de vista de su uso en nutrición animal, pueden considerarse dos grupos de leguminosas: leguminosas-forraje (p. ej. la alfalfa), usadas en alimentación de rumiantes y leguminosas-grano (p. ej. habas, guisantes y altramuces), usadas esencialmente para aves y cerdos, y en menor medida para rumiantes. Las leguminosas-grano pueden sustituir parcial o totalmente a fuentes de proteínas tradicionales, de origen animal, como carne, huesos o harina de pescado en los piensos para animales, y representan una alternativa para las harinas de soja y otras oleaginosas. Su contenido en proteína es variable pero elevado (25-45 g/100 g materia seca). No obstante, la presencia de metabolitos secundarios (inhibidores de proteasas, saponinas, glucósidos, lectinas, taninos, alcaloides), así como sus altos niveles de fibra (polisacáridos no amiláceos), ha restringido el uso de leguminosas-grano en la alimentación de animales monogástricos (aves y cerdos) y, mucho más en la de rumiantes. Sin embargo, en la actualidad se está incrementando el interés por el uso de estas materias primas como alimentos funcionales, sobre todo en nutrición humana, pero también en nutrición animal, entre otras razones, como consecuencia de la prohibición del uso de proteína animal (harinas de carne y hueso), que tuvo lugar en la Unión Europea tras la crisis de la Encefalopatía Espongiforme Bovina. Para establecer el valor nutritivo de las leguminosas ha de prestarse especial atención a su composición en nutrientes, su contenido en energía y la digestibilidad de los aminoácidos. En rumiantes, es necesario establecer la degradabilidad en el rumen tanto de la proteína como de los aminoácidos individuales y de los carbohidratos, aspectos que determinan la utilización de nutrientes en este grupo animal, pero sobre los que existe muy poca información. En la actualidad, la perspectiva respecto a los taninos en las dietas de rumiantes está cambiando considerándose que pueden ejercer un efecto beneficioso. La soja es la semilla más utilizada como fuente de proteína en nutrición animal, pero el hecho de que haya de importarse en su mayor parte y que sea modificada genéticamente suponen dificultades para su utilización en la actualidad en Europa. Razones de índole medioambiental, sanitarias y productivas resultan en un progresivo interés en el cultivo de leguminosas en la UE.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abreu, A., Carulla, J. E., Lascano, C. E., Díaz, T. E, Kreuzer, M. y Hess, H. D. (2004). Effects of Sapindus saponaria fruits on ruminal fermentation and duodenal nitrogen flow of sheep fed a tropical grass diet with and without legume. Journal of Animal Science, 82, pp. 1392-1400. http://dx.doi.org/10.2527/2004.8251392x PMid:15144079

Aguilera, J. F., Bustos, M. y Molina E. (1992). The degradability of legume seed meals in the rumen: effect of heat treatment. Animal Feed Science and Technology, 36, pp. 101-112. http://dx.doi.org/10.1016/0377-8401(92)90090-S

Arai, S. (2002). Global view on functional foods: Asian perspectives. British Journal of Nutrition, 88, S139-S143. http://dx.doi.org/10.1079/BJN2002678 PMid:12495455

Aubry, M. y Boucrot, P. (1986). Etude comparée de la digestion des viciline et lectine radiomarquées de Pisum sativum chez le rat. Annals in Nutrition and Metabolism, 30, pp. 175-182. http://dx.doi.org/10.1159/000177191

Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. y Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science, 307, pp. 1915- 1920. http://dx.doi.org/10.1126/science.1104816 PMid:15790844

Bampidis V. A. y Christodoulou, V. (2011). Chickpeas (Cicer arietinum L.) in animal nutrition: A review. Animal Feed Science and Technology, 168, pp. 1-20. http://dx.doi.org/10.1016/j.anifeedsci.2011.04.098

Batterham, E. S., Andersen, L. M., Lowe, R. F. y Darnell, R. E. (1986). Nutritional value of lupin (Lupinus albus)-seed meal for growing pigs: availability of lysine, effect of autoclaving and net energy content. British Journal of Nutrition, 56, pp. 645-659. http://dx.doi.org/10.1079/BJN19860145 PMid:3118937

Benchaar, C., Vernay, M., Bayourthe, C. y Moncoulon, R. (1994). Effect of extrusion of whole horse beanson protein digestion and amino acid absorption in dairy cows. Journal of Dairy Science, 77, pp. 1360-1371. http://dx.doi.org/10.3168/jds.S0022-0302(94)77075-2

Benevenga, N. J., Gahl, M. J. y Blemings, K. P. (1993). Role of protein-synthesis in amino-acid catabolism. Journal of Nutrition, 123, pp. 332-336. PMid:8429383

Boulter, D., Gatehouse, A. M. R., Gatehouse, J. A. y Cox, R. B. (1985). Plant protection using cow pea trypsin inhibitor - esp. used against heliothis pests on cotton, etc. Patent Number(s): EP135343-A1; EP135343-A ; US4640836-A.

Bressani, R. y Elias, L. G. (1980). Nutritional value of legume crops for humans and animals. En: Summerfield, R. J. y Bunting, A. H. (eds.) Advances in Legume Science. Surrey. England: Royal Botanic Gardens, pp. 135-155.

Burkitt, D. P., Walker, A. R. y Painter, N. S. (1972). Effect of dietary fibre on stools and the transit-times, and its role in the causation of disease. Lancet, 2, pp. 1408-1412. http://dx.doi.org/10.1016/S0140-6736(72)92974-1

Caballero, R. (1999). Castile-La Mancha: a once traditional and integrated cereal-sheep farming system under change. American Journal of Alternative Agriculture, 14, pp. 188-192. http://dx.doi.org/10.1017/S0889189300008389

Caballero, R., Riopérez, J., Fernández, E., Marín, M. T. y Fernández, C. (1992). A note on the use of field beans (Vicia faba) in lamb finishing diets. Animal Production, 54, pp. 441-444. http://dx.doi.org/10.1017/S0003356100020900

Caligari, S., Chiesa, G., Johnson, S. K., Camisassi, D., Gilio, D., Marchesi, M., Parolini, C., Rubio, L. A. y Sirtori, C.R. (2006). Lupin (Lupinus albus) protein isolate (L-ISO) has adequate nutritional value and reduces large intestinal weight in rats after restricted and ad libitum feeding. Annals of Nutrition and Metabolism, 50, pp. 528-537. http://dx.doi.org/10.1159/000098145 PMid:17191026

Christodoulou, V., Bampidis, V. A., Huˇcko, B., Ploumi, K., Iliadis, C., Robinson, P. H. y Mudˇrík, Z. (2005). Nutritional value of chickpeas in rations of lactating ewes and growing lambs. Animal Feed Science and Technology, 118, pp. 229–241. http://dx.doi.org/10.1016/j.anifeedsci.2004.10.017

Christou, P., Capell, T., Kohli, A., Gatehouse, J. A. y Gatehouse, A. M. R. (2006). Recent developments and future prospects in insect pest control in transgenic crops. Trends in Plant Science, 11, 6, pp. 302-308. http://dx.doi.org/10.1016/j.tplants.2006.04.001 PMid:16690346

Clemente, C. y Arqués, M. C. (2014). Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World Journal of Gastroenterology, 20, pp. 10305-10315. http://dx.doi.org/10.3748/wjg.v20.i30.10305 PMid:25132747 PMCid:PMC4130838

Cuadrado, C., Grant, G., Rubio, L. A., Múzquiz, M., Bardocz, S. y Pusztai, A. (2002). Nutritional utilization by the rat of diets based in lentil (Lens culinaris) seed meal or its fractions. Journal of Agricultural and Food Chemistry, 50, pp. 4371-4376. http://dx.doi.org/10.1021/jf020014j PMid:12105972

Cummings, J. H. (1981). Dietary fiber. British Medical Bulletin, 37, pp. 65-70. PMid:6266573

D'Mello, J. P. F. (1992). Chemical constraints to the use of tropical legumes in animal nutrition. Animal Feed Science and Technology, 38, pp. 237-261. http://dx.doi.org/10.1016/0377-8401(92)90105-F

Dréau, D., Lallès, J. P., Philouze-Rome, V., Toullec, R. y Salmon, H. (1994). Local and systemic immune responses to soybean protein ingestion in early-weaned pigs. Journal of Animal Science, 72, pp. 2090-2098. PMid:7982839

Ewen, S. W. B. y Pusztai, A. (1999). Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine. Lancet, 354, pp. 1353-1354. http://dx.doi.org/10.1016/S0140-6736(98)05860-7

Flis, M., Sobotka, W., Purwin, C. y Zdunczyk, Z. (1999). Nutritional value of diets containing field bean (Vicia faba L.) seeds with high or low proanthocyanidin levels for pig. Journal of Animal and Feed Sciences, 8, pp. 171-180.

Fuller, R. (1992). Probiotics. The Scientific Basis. London: Chapman & Hall. http://dx.doi.org/10.1007/978-94-011-2364-8

Furda, I. y Brine, C. J. (1990). New Developments in Dietary Fibre. London, New York: Plenum Press . http://dx.doi.org/10.1007/978-1-4684-5784-1

Gatel, F. (1992). Dietary factors affecting protein digestibility in pigs. En: 1ST International Symposium on Nitrogen Flow in Pig Production and Environmental Consequences. Wageningen, Netherlands, pp 70-89.

Gelvin A. A., Lardy, G. P., Soto-Navarro, S. A., Landblom, D. G. y Caton, J. S. (2004). Effect of field pea-based creep feed on intake, digestibility, ruminal fermentation, and performance by nursing calves grazing native range in western North Dakota. Journal of Animal Science, 82, pp. 3589-3599. http://dx.doi.org/10.2527/2004.82123589x PMid:15537780

Goelema, J. O., Spreeuwenberg, M. A. M., Hof, G., van der Poel, A. F. B. y Tamminga, S. (1998). Effect of pressure toasting on the rumen degradability and intestinal digestibility of whole and broken peas, lupins and faba feans and a mixture of these feedstuffs. Animal Feed Science and Technology, 76, pp. 35-50. http://dx.doi.org/10.1016/S0377-8401(98)00212-0

González, J. y Andrés, S. (2003). Rumen degradability of some feed legume seeds. Animal Research, 52, pp. 17–25. http://dx.doi.org/10.1051/animres:2003003

Hadjipanayiotou, M. (2002). Replacement of soybean meal and barley grain by chickpeas in lamb and kid fattening diets. Animal Feed Science and Technology, 96, pp. 103–109. http://dx.doi.org/10.1016/S0377-8401(01)00339-X

Hoste H., Torres-Acosta, J. F. J., Sandoval- Castro, C. A., Mueller-Harvey, I., Sotiraki, S., Louvandini, H., Thamsborg, S. M. y Terrill, T. H. (2015). Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Veterinary Parasitology, 212, pp. 5–17. http://dx.doi.org/10.1016/j.vetpar.2015.06.026 PMid:26190131

Imberechts, H., Degreve, H. y Lintermans, P. (1992). The pathogenesis of edema disease in pigs - a review. Veterinary Microbiology, 31, pp. 221-233. http://dx.doi.org/10.1016/0378-1135(92)90080-D

Jansman, A. J. M. (1993). Tannins in feedstuffs for simple stomached animals. Nutritional Research Reviews, 6, pp. 209–236. http://dx.doi.org/10.1079/NRR19930013 PMid:19094309

Jansman, A. J. M., Huisman, J. y van der Poel, A. F. B. (1993). Ileal and faecal digestibility in piglets of field beans (Vicia faba L.) varying in tannin content. Animal Feed Science and Technology, 42, pp. 83–96. http://dx.doi.org/10.1016/0377-8401(93)90025-F

Jansman, A. J. M., Verstegen, M. W. A., Huisman, J. y van den Berg, J. W. O. (1995). Effects of hulls of faba beans (Vicia faba L.) with a low or high content of condensed tannins on the apparent ileal and fecal digestibility of nutrients and the excretion of endogenous protein in ileal digesta and feces of pigs. Journal of Animal Science, 73, pp. 118–127. http://dx.doi.org/10.2527/1995.731118x PMid:7601724

Jezierny, D., Mosenthin, R., Sauer, N., Roth, S., Piepho, H.-P., Rademacher, M. y Eklund, M. (2011). Chemical composition and standardised ileal digestibilities of crude protein and amino acids in grain legumes for growing pigs. Livestock Science, 138, pp. 229-243. http://dx.doi.org/10.1016/j.livsci.2010.12.024

Kennedy, A. R. (1993). Cancer prevention by protease inhibitors. Preventive medicine, 22, pp. 796-811. http://dx.doi.org/10.1006/pmed.1993.1073 PMid:8234219

Kumar, V., Sinha, A. K., Makkar, H. P. S. y Becker, K. (2010). Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry, 120, pp. 945- 959. http://dx.doi.org/10.1016/j.foodchem.2009.11.052

Lallès, J. P., Dréau, D., Féménia, F., Parodi, A. L. y Toulec, R. (1996). Feeding heated soyabean flour increases the density of B and T lymphocytes in the small intestine of calves. Veterinary Immunological Immunopathology, 52, pp. 105-115. http://dx.doi.org/10.1016/0165-2427(95)05534-7

Lanza, M., Bella, M., Priolo, A. y Fasone, V. (2003). Peas (Pisum sativum L.) as an alternative protein source in lamb diets: growth performances, and carcass and meat quality. Small Ruminant Research, 47, pp. 63–68. http://dx.doi.org/10.1016/S0921-4488(02)00244-4

Liener, I. E. y Kakade, M. L. (1980). Protease inhibitors. In: Liener, I. E. (ed.) Toxic Constituents of Plant Foodstuffs. New York: Academic Press, pp. 7–71.

Liener, I. E., Sharon, N. y Lis, H. (1986). The Lectins: Properties, Fuctions and Applications in Biology and Medicine. New York: Academic Press.

Loe, E. R., Bauer, M. L., Lardy, G. P., Caton, J. S. y Berg, P. T. (2004). Field pea (Pisum sativum) inclusion in corn-based lamb finishing diets. Small Ruminant Research, 53, pp. 39–45. http://dx.doi.org/10.1016/j.smallrumres.2003.08.020

Lovati, M. R., Manzoni, C., Corsini, A., Granata, A., Frattini, R., Fumagalli, R. y Sirtori, C. R. (1992). Low-density-lipoprotein receptor activity is modulated by soybean globulins in cell-culture. Journal of Nutrition, 122, pp. 1971-1978. PMid:1527638

Mansbridge, R. J. y Blake, J. S. (1998). The effect of feeding different protein sources on intake, milk yield, milk composition and live weight in high yielding Holstein cows. Proceedings of the British Society of Animal Production, 202.

Marquardt, R. R., Campbell, L. D. y Ward, T. (1976). Studies with Chicks on the Growth Depressing Factor(s) in Faba Beans (Vicia faba L. var. minor). Journal of Nutrition, 106, pp. 275-284. PMid:1249650

Masucci, F., Di Francia, A., Romano, R., Maresca di Serracapriola, M. T., Lambiase, G., Varricchio, M. L. y Proto, V. (2006). Effect of Lupinus albus as protein supplement on yield, constituents, clotting properties and fatty acid composition in ewes' milk. Small Ruminant Research, 65, pp. 251–259. http://dx.doi.org/10.1016/j.smallrumres.2005.06.023

Mathew, A. G., Sutton, A. L., Scheidt, A. B., Patterson, J. A., Kelly, D. T. y Meyerholtz, K. A. (1993). Effect of galactan on selected microbial-populations and ph and volatile fatty-acids in the ileum of the weanling pig. Journal of Animal Science, 71, pp. 1503-1509. PMid:8325810

Modler, H. W., Mckellar, R. C. y Yaguchi, M. (1990). Bifidobacteria and bifidogenic factors. Canadian Institute of Food Science and Technology Journal, 23, pp. 29-41. http://dx.doi.org/10.1016/S0315-5463(90)70197-6

Molina-Alcaide E., Morales-García, E. Y., Martín-García, A. I., Ben Salem, H., Nefzaoui, A. y Sanz-Sampelayo, M. R. (2010). Effects of partial replacement of concentrate with feed blocks on nutrient utilization, microbial N flow, and milk yield and composition in goats. Journal of Dairy Science, 93, pp. 2076–2087. http://dx.doi.org/10.3168/jds.2009-2628 PMid:20412923

Murphy S. R. y McNiven, M. A. (1994). Raw or roasted lupin supplementation of grass silage diets for beef steers. Animal Feed Science and Technology, 46, pp. 23-35. http://dx.doi.org/10.1016/0377-8401(94)90062-0

Nielsen, S. S. (1991). Digestibility of legume proteins. Food Technology, 45, 112.

Poel, van der, A. F. B., Dellaert, L. M., Norel, A. y Helpster, J. P. F. G. (1992). The digestibility in piglets of faba bean (Vicia faba L.) as affected by breeding towards the absence of condensed tannins. British Journal of Nutrition, 68, pp. 793-800.

Priolo, A., Lanza, M., Galofaro, V., Fasone, V. y Bella, M. (2003). Partially or totally replacing soybean meal and maize by chickpeas in lamb diets: intramuscular fatty acid composition. Animal Feed Science and Technology, 108, pp. 215–221. http://dx.doi.org/10.1016/S0377-8401(03)00166-4

Pusztai, A. (1998). Biological effects of plant lectins on the gut: Metabolic consequences and applications. En: Effects of antinutrients on the nutritional value of legume diets. Cost Action 98, Luxembourg: Office for Oficial Publications of the European Communnities. PMCid:PMC1726969

Pusztai, A., Croy, R. R. D., Grant, G. y Stewart, J. C. (1983). Seed lectins: distributio location and biological role. En: Daussant, J. Mosse, J. y Vaugham, J. (eds.) Seed Proteins. London: Academic Press, pp. 53-81.

Pusztai, A., Grant, G., King, T. P. y Clarke, E. M. W. (1990). Chemical probiosis. En: Haresign, W. y Cole, D. J. A. (eds.) Recent Advances in Animal Nutrition. London: Butterworths, pp. 47-60. http://dx.doi.org/10.1016/b978-0-408-04150-8.50009-8

Pusztai, A., Grant, G., Spencer, R. J., Duguid, T. J., Brown, D. S., Ewen, S. W. B., Peumans, W. J., Vandamme, E. J. M. y Bardocz, S. (1993). Kidney bean lectin-induced E. coli overgrowth in the small-intestine is blocked by GNA, a mannose-specific lectin. Journal of Applied Bacteriology, 75, pp. 360-368. http://dx.doi.org/10.1111/j.1365-2672.1993.tb02788.x PMid:8226393

Pusztai, A., Kocsis, G., Grant, G., Ewen, S. W. B. y Bardocz, S. (1993). Use of lectins for targeting drug-microparticle complexes to selected sites in the gastrointestinal tract and facilitating their transport into the systemic circulation. Journal of Cellular Biochemistry, Suppl. 17A, p. 383.

Ramos-Morales, E., Sanz-Sampelayo, M. R. y Molina-Alcaide, E. (2010a). Nutritive evaluation of legume seeds for ruminant feeding. Journal of Animal Physiology and Animal Nutrition, 94, pp. 55–64. http://dx.doi.org/10.1111/j.1439-0396.2008.00881.x PMid:19138343

Ramos-Morales, E., de la Torre Adarve, G., Molina Alcaide, E. y Sanz Sampelayo, M. R. (2010b). Nitrogen and energy utilization in lactating dairy goats fed diets with different legume seeds. Journal of Animal Physiology and Animal Nutrition, 94, pp. 659–664. http://dx.doi.org/10.1111/j.1439-0396.2009.00953.x PMid:20050952

Reddy, N. R., Sathie, S. K. y Salunkhe, D. K. (1982). Phytates in legumes and cereals. Advances in Food Research, 28, pp. 1-92. http://dx.doi.org/10.1016/S0065-2628(08)60110-X

Roberts, T., Wilson, J., Guthrie, A., Cookson, K., Vancraeynest, D., Schaeffer, J., Moody, R. y Clark, S. (2015). New issues and science in broiler chicken intestinal health: intestinal microbial composition, shifts, and impacts. World's Poultry Science Journal, 71, pp. 259-269. http://dx.doi.org/10.1017/S0043933915000276

Romero, J. y Ryan, D. S. (1978). Susceptibility of major storage protein of bean, Phaseolus vulgaris, to in vitro enzymatic-hydrolysis. Journal of Agricultural and Food Chemistry, 26, pp. 784-788. http://dx.doi.org/10.1021/jf60218a037 PMid:353115

Rubio, L. A. (2000a). Physiological effects of legume storage proteins. Nutrition Abstracts and Reviews, 70, pp. 197-204.

Rubio, L. A. (2000b). Aspectos nutricionales relacionados con alimentos producidos a partir de organismos genéticamente modificados. En 11º Symposium Phytoma-Espa-a: La Biotecnología y la Sanidad de los Cultivos. Phytoma-Espa-a, 120, pp. 93-94.

Rubio, L. A., Brenes, A. y Casta-o, M. (1989). Histological alterations to the pancreas and the intestinal tract produced by raw faba bean (Vicia faba L.) diets in growing chicks. British Poultry Science, 30, pp. 15-28. http://dx.doi.org/10.1080/00071668908417129 PMid:2743166

Rubio, L. A., Brenes, A. y Casta-o, M. (1990). The utilization of raw and autoclaved faba beans (Vicia faba L.) and faba bean fractions in diets for growing chickens. British Journal of Nutrition, 63, pp. 419-433. http://dx.doi.org/10.1079/BJN19900130 PMid:2383523

Rubio, L. A., Brenes, A., Cutuli, M. y Setién, I. (1998). Lactobacilli counts in crop, ileum and caecum of growing broiler chickens fed practical diets containing whole or dehulled sweet lupin (Lupinus angustifolius) seed meal. British Poultry Science, 39, pp. 354-359. http://dx.doi.org/10.1080/00071669888890 PMid:9693815

Rubio, L. A., Clemente, A., Ruiz, R., Marín, M. C. y Jiménez, E. (2007). Aspectos novedosos en la Nutrición Funcional. En: AA.VV. Vigilancia Tecnológica (Alimentación Funcional), Sevilla: Agencia de Innovación y Desarrollo de Andalucía, Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía, pp. 51-53.

Rubio, L. A., Grant, G., Bardocz, S., Dewey, P. y Pusztai, A. (1991). Nutritional response of growing rats to faba beans (Vicia faba) and faba bean fractions. British Journal of Nutrition, 66, pp. http://dx.doi.org/10.1079/BJN19910053

Rubio, L. A., Grant, G., Cavallé, C., Martínez- Aragón, A. y Pusztai, A. (1994). High in vivo (rat) digestibility of faba bean (Vicia faba), lupin (Lupinus angustifolius) and soybean (Glycine max) soluble globulins. Journal of the Science of Food and Agriculture, 66, pp. 289-292. http://dx.doi.org/10.1002/jsfa.2740660305

Rubio, L. A., Grant, G., Daguid, T., Brown, D., Bardocz, S. y Pusztai, A. (1998). The nutritional utilization by rats of chickpea (Cicer arietinum) meal and its isolated globulin proteins is poorer than that of defatted soybean or lactalbumin. Journal of Nutrition, 128, pp. 1042-1047. PMid:9614167

Rubio, L. A., Grant, G., Daguid, T., Brown, D. y Pusztai, A. (1999). Organ relative weights and plasma amino acid concentrations in rats fed diets based in legume (faba bean, lupin, chickpea, soybean) seed meals or their fractions. Journal of the Science of Food and Agriculture, 79, pp. 187-194. http://dx.doi.org/10.1002/(SICI)1097-0010(199902)79:2<187::AID-JSFA177>3.0.CO;2-9

Rubio, L. A., Grant, G., Scislowsky, P., Brown, D., Annand, M. y Pusztai, A. (1995). The utilization of lupin (Lupinus angustifolius) and faba bean globulins by rats is poorer than of soybean globulins or lactalbumin but the nutritional value of lupin seed meal is lower only than that of lactalbumin. Journal of Nutrition, 125, pp. 2145-2155. PMid:7643249

Rubio, L. A., Grant, G., Spencer, R. y Pusztai, A. (1995). The effects of feeding lupin (Lupinus angustifolius) seed meal or its insoluble fraction on the intestinal microflora population in the rat. Microbial Ecology in Health and Disease, 8, pp. 101-105. http://dx.doi.org/10.3109/08910609509140086

Rubio, L. A., Múzquiz, M., Burbano, C., Cuadrado, C. y Pedrosa, M. M. (2002). High apparent ileal digestibility of amino acids in raw or germinated faba bean- (Vicia faba) and chickpea- (Cicer arietinum) based diets for rats. Journal of the Science of Food and Agriculture, 82, pp. 1702-1717. http://dx.doi.org/10.1002/jsfa.1228

Rubio, L. A. y Peinado, M. J. (2015). Replacement of soybean meal with lupin or chickpea seed meal in diets for fattening Iberian pigs promotes a healthier ileal microbiota composition. Advances in Microbiology, 4, pp. 498-503. http://dx.doi.org/10.4236/aim.2014.49055

Rubio, L. A., Rodríguez, J., Fernández, C. y Crespo, J. F. (2004). Storage proteins: physiological and antigenic effects. En Muzquiz, M., Hill, G. D., Cuadrado, C., Pedrosa, M. M y Burbano, C. (eds.) Recent advances of research in antinutritional factors in legume seeds and oilseeds. Proceedings of the fourth international workshop on antinutritional factors in legume seeds and oilseeds, Wageningen Academic Publishers, pp. 159-176.

Rubio, L. A. y Seiquer, I. (2002). Transport of amino acids from in vitro digested legume proteins or casein in Caco-2 cell cultures. Journal of Agricultural and Food Chemistry, 50, pp. 5202-5206. http://dx.doi.org/10.1021/jf0201778 PMid:12188630

Salyers, A. A. (1979). Energy-sources of major intestinal fermentative anaerobes. American Journal of Clinical Nutrition, 32, pp. 158-163. PMid:367143

Salminen, S., Bouley, C., Boutron-Ruault, M.- C., Cummings, J. H., Franck, A., Gibson, G. R., Isolauri, E., Mores, M. C., Roberfroid, M. y Rowland, I. (1998). Functional Food Science in Europe. British Journal of Nutrition, 80, Suppl 1, pp. S147-S171. http://dx.doi.org/10.1079/BJN19980108

Saminathan Mookia, Ch. Ch. S., Norhani, A., Vui Ling Wong, C. M. y YinWan, H. (2015). Effects of condensed tannin fractions of different molecular weights from a Leucaena leucocephala hybrid on in vitro methane production and rumen fermentation. Journal of the Science of Food and Agriculture, 95, pp. 2742–2749. http://dx.doi.org/10.1002/jsfa.7016 PMid:25418980

Shamsuddin, A. M. y Ullah, A. (1989). Inositol hexaphosphate inhibits large intestinal cancer in f344 rats 5 months after induction by azoxymethane. Carcinogenesis, 10, pp. 625-626. http://dx.doi.org/10.1093/carcin/10.3.625 PMid:2924408

Shamsuddin, A. M. (1995). Inositol phosphates have novel anticancer function. Journal of Nutrition, 125, S725-S732.

Selle, P. H., Cowieson, A. J., Cowieson, N. P. y Ravindran, V. (2012). Protein–phytate interactions in pig and poultry nutrition: a reappraisal. Nutrition Research Reviews, 25, pp. 1-17. http://dx.doi.org/10.1017/S0954422411000151 PMid:22309781

Sgarbieri, V. C. y Whitaker, J. R. (1982). Physical, chemical, and nutritional properties of common bean (Phaseolus) proteins. Advances in Food Research, 28, pp. 93-166. http://dx.doi.org/10.1016/S0065-2628(08)60111-1

Soto-Navarro, S. A., Williams, G. H., Bauer, M. L., Lardy, G. P., Landblom, D. G. y Caton, J. S. (2004). Effect of field pea replacement level on intake and digestion in beef steers fed by-product-based medium-concentrate diets. Journal of Animal Science, 82, pp. 1855-1862. http://dx.doi.org/10.2527/2004.8261855x PMid:15217014

Trevi-o, J., Centeno, C., Brenes, A., Yuste, P. y Rubio, L. A. (1990). Effect of dietary oligosaccharides on the digestion of pea (Pisum sativum L.) starch by growing chicks. Animal Feed Science and Technology, 30, pp. 313-319. http://dx.doi.org/10.1016/0377-8401(90)90021-Y

Ullah, A. y Shamsuddin, A. M. (1990). Dose-dependent inhibition of large intestinal cancer by inositol hexaphosphate in f344 rats. Carcinogenesis, 11, pp. 2219- 2222. http://dx.doi.org/10.1093/carcin/11.12.2219 PMid:2265472

Utrilla, M. P., Peinado, M. J., Ruiz, R., Rodríguez-Nogales, A., Algieri, F., Rodríguez- Cabezas, M. E., Clemente, A., Gálvez, J. y Rubio, L. A. (2015). Pea (Pisum sativum L.) seed albumin extracts show anti-inflammatory effect in a DSS model of mouse colitis. Molecular Nutrition and Food Research, 59, pp. 807-819. http://dx.doi.org/10.1002/mnfr.201400630 PMid:25626675

Vasta, V., Nudda, A., Cannas, A., Lanza, M. y Priolo, A. (2008). Alternative feed resources and their effects on the quality of meat and milk from small ruminants. Review. Animal Feed Science and Technology, 147, pp. 223–246. http://dx.doi.org/10.1016/j.anifeedsci.2007.09.020

Voisin, A. S., Guéguen, J., Huyghe, C., Jeuffroy, M. H., Magrini, M. B., Meynard, J. M., Mougel, C., Pellerin, S. y Pelzer, E. (2014). Legumes for feed, food, biomaterials and bioenergy in Europe: a review. Agronomy for Sustainable Development, 34, pp. 361–380. http://dx.doi.org/10.1007/s13593-013-0189-y

Wiggins, H. S. (1984). Nutritional-value of sugars and related-compounds undigested in the small gut. Proceedings of the Nutrition Society, 43, pp. 69-75. http://dx.doi.org/10.1079/PNS19840029 PMid:6709638

Wilkins R. J. y Jones, R. (2000). Alternative home-grown protein sources for ruminants in the United Kingdom. Review article. Animal Feed Science and Technology, 85, pp. 23-32. http://dx.doi.org/10.1016/S0377-8401(00)00140-1

Wilson, B. J., Bentley, H. y McNab, J. M. (1972a). Trypsin-inhibitor activity in field bean (Vicia faba). Journal of the Science of Food and Agriculture, 23, pp. 679-684. http://dx.doi.org/10.1002/jsfa.2740230602 PMid:5065106

Wilson, B. J., McNab, J. M. y Bentley, H. (1972b). Effect on chick growth of a trypsin-inhibitor isolate from field bean (Vicia faba). British Poultry Science, 13, pp. 521-523. http://dx.doi.org/10.1080/00071667208415979 PMid:4641262

Yáñez-Ruiz, D. R., Martín-García, A. I., Weisbjerg, M. R., Hvelplund, T. y Molina-Alcaide, E. (2009). A comparison of different legume seeds as protein supplement to optimise the use of low quality forages by ruminants. Archives of Animal Nutrition, 63, pp. 39-55. http://dx.doi.org/10.1080/17450390802611479 PMid:19271550

Yáñez Ruiz, D. R., Moumen, A. y Molina, E. (2004). Comparative studies on microbial protein synthesis in the rumen of goats and sheep. Journal of Animal and Feed Sciences, 13, Suppl. 1, pp. 251-254.

Publicado

2016-06-30

Cómo citar

Rubio, L. A., & Molina, E. (2016). Las leguminosas en alimentación animal. Arbor, 192(779), a315. https://doi.org/10.3989/arbor.2016.779n3005

Número

Sección

Artículos