Las micotoxinas: el enemigo silencioso

Autores/as

DOI:

https://doi.org/10.3989/arbor.2020.795n1004

Palabras clave:

micotoxinas, aflatoxinas, mohos filamentosos, cambio climático, exposición, detoxificación

Resumen


Las micotoxinas son metabolitos fúngicos secunda­rios que pueden ejercer un efecto tóxico tanto en el hombre como en los animales debido, principalmente, a su exposición a través de los alimentos. La presencia de estos compuestos ha sido demostrada en una amplia variedad de materias primas, alimentos y piensos, en los que lo habitual es encontrar de for­ma frecuente una contaminación múltiple por diferentes mico­toxinas, en pequeñas cantidades, lo que puede generar efectos tóxicos subcrónicos, así como bioacumulación. Este artículo revisa los principales elementos que configuran la problemática de las micotoxinas para el hombre y los animales, y aborda los retos de futuro que se plantean en el estudio de las micotoxinas, entre los que destacan el efecto que el cambio climático puede tener sobre el patrón de contaminación por micotoxinas en los alimentos, el descubrimiento creciente de nuevas micotoxinas en formas modificadas, la evaluación de la coexistencia de estas to­xinas y otros contaminantes, y las formas para detectar e intentar eliminar estos compuestos tóxicos de los alimentos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Avantaggiato, G., Greco, D., Damascelli, A., Sol­frizzo, M. y Visconti, A. (2014). Assessment of multi-mycotoxin adsorption efficacy of grape pomace. Journal of Agricultural and Food Chemistry, 62 (2), pp. 497-507.

Battilani, P., Toscano, P., Van der Fels-Klerx, H. J., Moretti, A., Camardo Leggieri, M., Bre­ra, C., Portais, A., Goumperis, T. y Robin­son, T. (2016). Aflatoxin B1 contamination in maize in Europe increases due to cli­mate change. Scientific Reports, 6, 24328.

Bergamini, E., Catellani, D., Dall’Asta, C., Gala­verna, G., Dossena, A., Merchelli, R. y Su­man, M. (2010). Fate of Fusarium myco­toxins in the cereal product supply chain: The deoxynivalenol (DON) case within in­dustrial baking process in the bread-ma­king technology. Food Additives and Con­taminants, 27 (5), pp. 677-687.

Boudergue, C., Burel, C., Dragacci, S., Fa­vrot, M. C., Fremy, J. M., Massimi, C. […] y Avantaggiato, G. (2009). Review of mycotoxin-detoxifying agents used as feed additives: mode of action, efficacy and feed/food safety. EFSA Supporting Publications, 6 (9), 22E.

Bullerman, L. B. y Bianchini, A. (2007). Sta­bility of mycotoxins during food pro­cessing. International Journal of Food Microbiology, 119 (1-2), pp. 140-146.

Campagnollo, F. B., Ganev, K. C., Khaneghah, A. M., Portela, J. B., Cruz, A. G., Granato, D., Corassin, C. H., Oliveira, C. A. F. y Sant’Ana, A. S. (2016). The occurrence and effect of unit operations for dairy products proces­sing on the fate of aflatoxin M1: A review. Food Control, 68, pp. 310-329.

Cano-Sancho, G., Marín, S., Ramos A. J. y Sanchis, V. (2014). Micotoxines. Estudi de dieta total a Catalunya 2008-2009. Barcelona: Agencia de Salut Pública de Catalunya. Disponible en: https://scien­tiasalut.gencat.cat/bitstream/hand­le/11351/997/micotoxines_estudi_die­ta_catalunya_2014.pdf?sequence=1

Castellá, G., Bragulat, M. R. y Cabañes, F. J. (1999). Surveillance of fumonisins in maize-based feeds and cereals from Spain. Journal of Agricultural and Food Chemistry, 47 (11), pp. 4707-4710.

Faucet-Marquis, V., Joannis-Cassan, C., Hadjeba-Medjdoub, K., Ballet, N. y Pfo­hl-Leszkowicz, A. (2014). Development of an in vitro method for the prediction of mycotoxin binding on yeast-based products: case of aflatoxin B1, zearale­none and ochratoxin A. Applied Micro­biology and Biotechnology, 98 (17), pp. 7583-7596.

Freire, L. y Sant’Ana, A. S. (2018). Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food and Chemical Toxi­cology, 111, pp. 189-205.

Gerding, J., Ali, N., Schwartzbord, J., Cramer, B., Brown, D. L., Degen, G. H. y Humpf, H.-U. (2015). A comparative study of the human urinary mycotoxin excretion pat­terns in Bangladesh, Germany, and Haiti using a rapid and sensitive LC-MS/MS approach. Mycotoxin Research, 31 (3), pp. 127-136.

Gratz, S. W., Dinesh, R., Yoshinari, T., Holtrop, G., Richardson, A. J., Duncan, G., Mac­Donald, S., Lloyd, A. y Tarbin, J. (2017). Masked trichothecene and zearalenone mycotoxins withstand digestion and ab­sorption in the upper GI tract but are efficiently hydrolyzed by human gut mi­crobiota in vitro. Molecular Nutrition & Food Research, 61 (4), 1600680.

Griessler, K., Rodrigues, I., Handl, J. y Hofs­tetter, U. (2010). Occurrence of mycoto­xins in Southern Europe. World Mycoto­xin Journal, 3 (3), pp. 301-309.

Harper, A. F., Estienne, M. J., Meldrum, J. B., Harrell, R. J. y Diaz, D. E. (2010). As­sessment of a hydrated sodium calcium aluminosilicate agent and antioxidant blend for mitigation of aflatoxin-indu­ced physiological alterations in pigs. Journal of Swine Health Production, 18 (6), pp. 282-289.

Hope, J. (2013). A review of the mecha­nism of injury and treatment approa­ches for illness resulting from exposu­re to water-damaged buildings, mold, and mycotoxins. The Scientific World Journal, 2013, 767482.

Howard, P. C., Churchwell, M. I., Couch, L. H., Marques, M. M. y Doerge, D. R. (1998). Formation of N-(carboxymethyl)-fu­monisin B1, following the reaction of fumonisin B1 with reducing sugars. Journal of Agricultural and Food Che­mistry, 46 (9), pp. 3546-3557.

Jard, G., Liboz, T., Mathieu, F., Guyonvarc’h, A. y Lebrihi, A. (2011). Review of myco­toxin reduction in food and feed: From prevention in the field to detoxification by adsorption or transformation. Food Additives & Contaminants: Part A, 28 (11), pp. 1590-1609.

Kolpin, D. W., Schenzel, J., Meyer, M. T., Phillips, P. J., Hubbard, L. E., Scott, T. M. y Bucheli, T. D. (2014). Mycotoxins: diffuse and point source contributions of natural contaminants of emerging concern to streams. Science of the Total Environment, 470-471, pp. 669- 676.

Kong, C., Shin, S. Y. y Kim, B. G. (2014). Evaluation of mycotoxin sequestering agents for aflatoxin and deoxynivale­nol: an in vitro approach. SpringerPlus, 3, 346.

Koynarski, V., Stoev, S., Grozeva, N., Mirt­cheva, T., Daskalov, H., Mitev, J. y Mant­le, P. (2007). Experimental coccidiosis provoked by Eimeria acervulina in chicks simultaneously fed on ochratoxin A con­taminated diet. Research in Veterinary Science, 82 (2), pp. 225-231.

Le, T. H., Alassane-Kpembi, I., Oswald, I. P. y Pinton, P. (2017). Analysis of the interac­tions between environmental and food contaminants, cadmium and deoxyniva­lenol, in different target organs. Science of the Total Environment, 622-623, pp. 841-848.

Lewis L., Onsongo M., Njapau H., Schurz- Rogers, H., Luber G., Kieszak S., Nya­mongo J. […] y Rubin C. (2005). Aflato­xin contamination of commercial maize products during an outbreak of acute aflatoxicosis in Eastern and Central Ken­ya. Environmental Health Perspectives, 113 (12), pp. 1763-1767.

Logrieco, A. F. y Moretti, A. (2008). Bet­ween emerging and historical pro­blems: An overview of the main toxi­genic fungi and mycotoxin concerns in Europe. En: Leslie, J. F., Brandyo­padhyay, R. y Visconti, A. (eds.) Myco­toxins: Detection methods, manage­ment, public health and agricultural trade. Wallingford: CABI.

Madgwick, J. W., West, J. S., White, R. P., Se­menov, M. A., Townsend, J. A., Turner, J. A. y Fitt, B. D. L. (2011). Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. European Journal of Plant Pathology, 130 (1), pp. 117-131.

Marin, S., Cano-Sancho, G., Sanchis, V. y Ra­mos, A. J. (2018). The role of mycotoxins in the Human Exposome: application of mycotoxin biomarkers in exposome-health studies. Food and Chemical To­xicology, 121, pp. 504-518.

Marin, S., Ramos, A. J., Cano-Sancho G. y Sanchis V. (2013). Mycotoxins: Oc­currence, toxicology, and exposure assessment. Food and Chemical Toxi­cology, 60, pp. 218-237.

Medina, A., González-Jartin, J. M. y Sainz, M. J. (2017). Impact of global warming on mycotoxins. Current Opinion in Food Science, 18, pp. 76-81.

Milani, J. y Maleki, G. (2014). Effects of processing on mycotoxin stability in cereals. Journal of the Science of Food and Agriculture, 94 (12), pp. 2372-2375.

Nielsen, L. K., Jensen, J. D., Nielsen, G. C., Jensen, J. E., Spliid, N. H., Thomsen, I. K., Justesen, A. F., Collinge, D. B. y Jørgen­sen, L. N. (2011). Fusarium head blight of cereals in Denmark: Species complex and related mycotoxins. Phytopatho­logy, 101 (8), pp. 960-969.

Pestka, J. J. y Bondy, G. S. (1990). Alte­ration of immune function following dietary mycotoxin exposure. Canadian Journal of Physiology and Pharmacolo­gy, 68 (7), pp. 1009-1016.

Ramos, A. J. y Hernández, E. (1997). Preven­tion of aflatoxicosis in farm animals by means of hydrated sodium calcium alu­minosilicate addition to feedstuffs: A re­view. Animal Feed Science and Techno­logy, 65 (1-4), pp. 197-206.

Ramos, A. J., Da Rocha Rosa, C. A., Cava­glieri, L. R. y Guedes, C. A. (2011). Le­gislación e impacto económico de las micotoxinas. En: Ramos, A. J. (ed.). Mi­cotoxinas y micotoxicosis. Madrid: AMV Ediciones, pp. 427-462.

Rodríguez-Carrasco, Y., Moltó, J. C., Ma­ñes, J. y Berrada, H. (2014). Exposure assessment approach through myco­toxin/creatinine ratio evaluation in uri ne by GC-MS/MS. Food and Chemical Toxicology, 72, pp. 69-75.

Rychlik, M., Humpf, H-U., Marko, D., Dänic­ke, S., Mally, A., Berthiller, Klaffke, H. y Lorenz, N. (2014). Proposal of a com­prehensive definition of modified and other forms of mycotoxins including “masked” mycotoxins. Mycotoxin Re­search, 30 (4), pp. 197-205.

Samar, M., Neira, M., Resnik, S. y Pacin, A. (2001). Effect of fermentation on naturally occurring deoxynivalenol (DON) in Argen­tinean baking process in the bread proces­sing technology. Food Additives & Conta­minants, 18 (11), pp. 1004-1010.

Smith, M. C., Madec, S., Coton, E. y Hymery, N. (2016). Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins, 8 (4), pp. 94-130.

Solfrizzo, M., Gambacorta, L. y Visconti, A. (2014). Assessment of multi-mycotoxin exposure in southern Italy by urinary multi-biomarker determination. To­xins, 6 (2), pp. 523-538.

Stoev, S. D., Goundasheva, D., Mirtcheva, T. y Mantle, P. G. (2000). Susceptibility to se­condary bacterial infections in growing pigs as an early response in ochratoxico­sis. Experimental and Toxicologic Patho­logy, 52 (4), pp. 287-296.

Traore, T., Bechaux, C., Sirot, V. y Crepet, A. (2016). To which chemical mixtures are the French population exposed? Mixtu­re identification from the second French Total Diet Study. Food Chemistry and To­xicology, 98, pp. 179-188.

van der Fels-Klerx, H. J., van Asselt, E. D., Madsen, M. S. y Olesen, J. E. (2013). Im­pact of climate change effects on conta­mination of cereal grains with deoxyni­valenol. PloS one, 8 (9), e73602.

Vidal, A., Ambrosio, A., Sanchis, V., Ramos, A. J. y Marín, S. (2016). Enzyme bread improvers affect the stability of deoxy­nivalenol and deoxynivalenol-3-gluco­side during breadmaking. Food Che­mistry, 208, pp. 288-296.

Vidal, A., Morales, H., Sanchis, V., Ramos, A. J. y Marín, S. (2014). Stability of DON and OTA during the breadmaking pro­cess and determination of process and performance criteria. Food Control, 40, pp. 234-242.

Vila-Donat, P., Marín, S., Sanchis, V. y Ramos, A. J. (2018). A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capa­city, for animal feed decontamination. Food and Chemical Toxicology, 114, pp. 246-259.

Wallin, S., Gambacorta, L., Kotova, N., Warensjö Lemming, E., Nälsén, C., Sol­frizzo, M. y Olsen, M. (2015). Biomoni­toring of concurrent mycotoxin expo­sure among adults in Sweden through urinary multi-biomarker analysis. Food and Chemical Toxicology, 83, pp. 133-139.

Wielogórska, E., MacDonald, S. y Elliot C. T. (2016). A review of the efficacy of mycotoxin detoxifying agents used in feed in light of changing global environ­ment and legislation. World Mycotoxin Journal, 9 (3), pp. 419-433.

Recursos en línea

Commission regulation (EC) No. 386/2009 of 12 May 2009 amending Regulation (EC) No. 1831/2003 of the European Parliament and of the Council as regards the establishment of a new functional group of feed additives. Official Journal of the European Union, L 118, 66. [En línea]. Disponible en: https://eur-lex. europa.eu/LexUriServ/LexUriServ.do?u ri=OJ:L:2009:118:0066:0066:EN:PDF

Manual on the application of the HACCP system in mycotoxin prevention and control. FAO. Food and Nutrition Pa­per 73, 2001. [En línea]. Disponible en: http://www.fao.org/3/a-y1390e.pdf

Opinion of the Scientific Panel on Conta­minants in the Food Chain on a request from the Commission related to the potential increase of consumer health risk by a possible increase of the exis­ting maximum levels for aflatoxins in almonds, hazelnuts and pistachios and derived products. EFSA Journal, 5 (3), 446, 2007. [En línea]. Disponible en: https://efsa.onlinelibrary.wiley.com/ doi/10.2903/j.efsa.2007.446

RASFF. The Rapid Alert System for Food and Feed (2018). RASFF annual report 2017. Luxembourg: Publications Office of the European Union, 2018. [En línea].

The costs of mycotoxins in animal produc­tion. All about feed, 23 mayo 2016. [En línea]. Disponible en: https://www. allaboutfeed.net/Mycotoxins/Arti­cles/2016/5/The-cost-of-mycotoxins-in-animal-production-2787006W/

Publicado

2020-03-30

Cómo citar

Ramos Girona, A. J., Marín Sillué, S., Molino Gahete, F., Vila Donat, P., & Sanchis Almenar, V. (2020). Las micotoxinas: el enemigo silencioso. Arbor, 196(795), a540. https://doi.org/10.3989/arbor.2020.795n1004

Número

Sección

Artículos