Arbor, Vol 196, No 795 (2020)

Biopelículas y persistencia microbiana en la industria alimentaria


https://doi.org/10.3989/arbor.2020.795n1002

Paula Fernández-Gómez
Universidad de León, España
orcid https://orcid.org/0000-0001-9647-5251

Miguel Prieto
Universidad de León, España
orcid https://orcid.org/0000-0001-9202-3856

Pablo S. Fernández-Escámez
Universidad Politécnica de Cartagena (ETSIA), España
orcid https://orcid.org/0000-0002-4273-7268

Mercedes López
Universidad de León, España
orcid https://orcid.org/0000-0003-2899-6391

Avelino Alvarez-Ordóñez
Universidad de León, España
orcid https://orcid.org/0000-0002-9951-4786

Resumen


Este artículo de revisión examina la importancia que tienen las comunidades microbianas que colonizan los ambien­tes y equipos de procesado de alimentos formando biopelículas o biofilms en la persistencia microbiana en la industria alimen­taria y consecuentemente, en la seguridad y la calidad de los alimentos. La atención se centra especialmente en biopelículas formadas por microorganismos no deseados, es decir, microor­ganismos alterantes y patógenos. Se presenta información so­bre la variabilidad intraespecífica en la formación, la ecología y la arquitectura de las biopelículas, y los factores que influyen en su formación. Asimismo, se resume la información disponible sobre nuevos agentes o estrategias para el control de la forma­ción o eliminación de biopelículas.

Palabras clave


biofilms; persistencia; ecología microbiana; control; procesado de alimentos

Texto completo:


HTML PDF XML

Referencias


Al-Seraih, A., Belguesmia, Y., Baah, J., Szunerits, S., Boukherroub, R. y Drider, D. (2017). Enterocin B3A-B3B produced by LAB collected from infant faeces: potential utilization in the food indus­try for Listeria monocytogenes biofilm management. Antonie van Leeuwen­hoek. International Journal of General and Molecular Microbiology, 110 (2), pp. 205-219.

Álvarez-Ordóñez, A., Alvseike, O., Omer, M. K ., Heir, E., Axelsson, L., Holck, A. y Prieto, M. (2013). Heterogeneity in resistance to food-related stresses and biofilm formation ability among verocytotoxigenic Escherichia coli strains. International Journal of Food Microbiology, 161 (3), pp. 220-230.

Araújo, P. A., Machado, I., Meireles, A., Leiknes, T. O., Mergulhão, F., Melo, L. F. y Simões, M. (2017). Combination of se­lected enzymes with cetyltrimethylam­monium bromide in biofilm inactivation, removal and regrowth. Food Research International, 95, pp. 101-107.

Ashraf, M. A., Ullah, S., Ahmad, I., Qureshi, A. K., Balkhair, K. S. y Abdur Rehman, M. (2014). Green biocides, a promising technology: Current and future applica­tions to industry and industrial process­es. Journal of the Science of Food and Agriculture, 94 (3), pp. 388-403.

Axelson, L., Holck, A., Rud, I., Samah, D., Tierce, P., Favre, M. y Kure, C. F. (2013). Cleaning of conveyor belt ma­terials using ultrasound in a thin layer of water. Journal of Food Protection, 76 (8), pp. 1401-1407.

Bas, S., Kramer, M. y Stopar, D. (2017). Bio­film surface density determines biocide effectiveness. Frontiers in Microbiol­ogy, 8, 2443.

Bassi, D., Cappa, F., Gazzola, S., Orrù, L. y Cocconcelli, P. S. (2017). Biofilm forma­tion on stainless steel by Streptococcus thermophilus UC8547 in milk environ­ments is mediated by the proteinase PrtS. Applied and Environmental Micro­biology, 83 (8), e02840-16.

Benítez-Páez, A. y Sanz, Y. (2017). Multi-locus and long amplicon sequencing approach to study microbial diversity at species level using the MinIONTM por­table nanopore sequencer. GigaScience, 6 (7), pp. 1-12.

Berlanga, M. y Guerrero, R. (2016). Living together in biofilms: The microbial cell factory and its biotechnological implica­tions. Microbial Cell Factories, 15, 165.

Bolocan, A. S., Pennone, V., O’Connor, P. M., Coffey, A., Nicolau, A. I., McAuliffe, O. y Jordan, K. (2017). Inhibition of Listeria monocytogenes biofilms by bacterio­cin-producing bacteria isolated from mushroom substrate. Journal of Applied Microbiology, 122 (1), pp. 279-293.

Bridier, A., Sanchez-Vizuete, P., Guilbaud, M., Piard, J. C., Naïtali, M. y Briandet, R. (2015). Biofilm-associated persistence of food-borne pathogens. Food Micro­biology, 45 (Pt B), pp. 167-178.

Brown, H. L., Hanman, K., Reuter, M., Betts, R. P. y Vliet, A. H. M. van (2015). Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment. Frontiers in Microbi­ology, 6, 699.

Brown, H. L., Reuter, M., Salt, L. J., Cross, K. L., Betts, R. P. y Vliet, A. H. M. (2014). Chicken juice enhances surface attach­ment and biofilm formation of Campylo­bacter jejuni. Applied and Environmental Microbiology, 80 (22), pp. 7053-7060.

Buzón-Durán, L., Alonso-Calleja, C., Riesco- Peláez, F. y Capita, R. (2017). Effect of sub­inhibitory concentrations of biocides on the architecture and viability of MRSA bio­films. Food Microbiology, 65, pp. 294-301.

Caballero Gómez, N., Abriouel, H., Gran­de, M. J., Pérez Pulido, R. y Gálvez, A. (2013). Combined treatments of en­terocin AS-48 with biocides to improve the inactivation of methicillin-sensitive and methicillin-resistant Staphylococ­cus aureus planktonic and sessile cells. International Journal of Food Microbiol­ogy, 163 (2–3), pp. 96-100.

Capita, R., Buzón-Durán, L., Riesco-Peláez, F. y Alonso-Calleja, C. (2017). Effect of sub-lethal concentrations of biocides on the structural parameters and vi­ability of the biofilms formed by Salmo­nella Typhimurium. Foodborne Patho­gens and Disease, 14 (6), pp. 350-356.

Chaitiemwong, N., Hazeleger, W. C. y Beum­er, R. R. (2014). Inactivation of Listeria monocytogenes by disinfectants and bac­teriophages in suspension and stainless steel carrier tests. Journal of Food Protec­tion, 77 (12), pp. 2012-2020.

Chen, C. Y., Hofmann, C. S., Cottrell, B. J., Strobaugh, T. P., Paoli, G. C., Nguyen, L. H., Yan, X. y Uhlich, G. A. (2013). Phenotypic and genotypic characterization of biofilm forming capabilities in non-O157 Shiga toxin-producing Escherichia coli strains. PLoS ONE, 8 (12), e84863

Cherifi, T., Jacques, M., Quessy, S. y Fra­valo, P. (2017). Impact of nutrient re­striction on the structure of Listeria monocytogenes biofilm grown in a mi­crofluidic system. Frontiers in Microbi­ology 8, 864.

Chopra, L., Singh, G., Kumar Jena, K. y Sa­hoo, D. K. (2015). Sonorensin: A new bacteriocin with potential of an anti-biofilm agent and a food biopreser­vative. Scientific Reports, 5, 13412.

Chylkova, T., Cadena, M., Ferreiro, A. y Pi­tesky, M. (2017). Susceptibility of Sal­monella biofilm and planktonic bacteria to common disinfectant agents used in poultry processing. Journal of Food Pro­tection, 80 (7), pp. 1072-1079.

Coronel-León, J., Marqués, A. M., Basti­da, J. y Manresa, A. (2016). Optimizing the production of the biosurfactant li­chenysin and its application in biofilm control. Journal of Applied Microbiol­ogy, 120 (1), pp. 99-111.

Cossu, A., Si, Y., Sun, G. y Nitin, N. (2017). Antibiofilm effect of poly(vinyl alcohol-coethylene) halamine film against Listeria innocua and Escherichia coli O157:H7. Applied and Environmen­tal Microbiology, 83 (19), e00975-17.

Coughlan, L. M., Cotter, P. D., Hill, C. y Al­varez-Ordóñez, A. (2016). New weap­ons to fight old enemies: Novel strate­gies for the (bio)control of bacterial biofilms in the food industry. Frontiers in Microbiology, 7, 1641.

Daneshvar Alavi, H. E. y Truelstrup Hansen, L. (2013). Kinetics of biofilm forma­tion and desiccation survival of Listeria monocytogenes in single and dual spe­cies biofilms with Pseudomonas fluore­scens, Serratia proteamaculans or She­wanella baltica on food-grade stainless steel surfaces. Biofouling, 29 (10), pp. 1253-1268.

Dhowlaghar, N., De Abrew Abeysundara, P., Nannapaneni, R., Schilling, M. W., Chang, S., Cheng, W. H. y Sharma, C. S. (2018). Biofilm formation by Salmo­nella spp. in catfish mucus extract un­der industrial conditions. Food Micro­biology, 70, pp. 172-180.

Dimakopoulou-Papazoglou, D., Lianou, A. y Koutsoumanis, K. P. (2016). Model­ling biofilm formation of Salmonella enterica ser. Newport as a function of pH and water activity. Food Microbiol­ogy, 53 (Pt B), pp. 76–81.

Duanis-Assaf, D., Steinberg, D., Chai, Y. y Shemesh, M. (2016). The LuxS based quorum sensing governs lactose in­duced biofilm formation by Bacillus subtilis. Frontiers in Microbiology, 6, 1517.

Endersen, L., Buttimer, C., Nevin, E., Coffey, A., Neve, H., Oliveira, H., Lavigne, R. y O’Mahony, J. (2017). Investigating the biocontrol and anti-biofilm potential of a three phage cocktail against Cronobacter sakazakii in different brands of infant formula. International Journal of Food Microbiology, 253, pp. 1-11.

Fagerlund, A., Langsrud, S., Heir, E., Mik­kelsen, M. I. y Møretrø, T. (2016). Biofilm matrix composition affects the susceptibility of food associated staphylococci to cleaning and disin­fection agents. Frontiers in Microbiol­ogy, 7, 856.

Faille, C., Bénézech, T., Midelet-Bourdin, G., Lequette, Y., Clarisse, M., Ronse, G., Ronse, A. y Slomianny, C. (2014). Sporu­lation of Bacillus spp. within biofilms: A potential source of contamination in food processing environments. Food Microbiology, 40, pp. 64-74.

Feng, G., Cheng, Y., Wang, S. Y., Hsu, L. C., Fe­liz, Y., Borca-Tasciuc, D. A., Worobo, R. W. y Moraru, C. I. (2014). Alumina surfaces with nanoscale topography reduce at­tachment and biofilm formation by Esch­erichia coli and Listeria spp. Biofouling, 30 (10), pp. 1253–1268.

Fialho, J. F. Q., Naves, E. A. A., Bernar­des, P. C., Ferreira, D. C., Anjos, L. D. dos, Gelamo, R. V., Sá, J. P. N. de y Andrade, N. J. de (2018). Stainless steel and polyethylene surfaces func­tionalized with silver nanoparticles. Food Science and Technology Interna­tional, 24 (1), pp. 87-94.

Field, D., O’Connor, R., Cotter, P. D., Ross, R. P. y Hill, C. (2016). In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms. Frontiers in Microbiology, 7, 508.

Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A. y Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews Microbi­ology, 14 (9), pp. 563-575.

Gaglio, R., Cruciata, M., Gerlando, R. di, Scatassa, M. L., Cardamone, C., Man­cuso, I., Sardina, M. T., Moschetti, G., Portolano, B. y Settanni, L. (2016). Mi­crobial activation of wooden vats used for traditional cheese production and evolution of neoformed biofilms. Ap­plied and Environmental Microbiol­ogy, 82 (2), pp. 585-595.

Gião, M. S. y Keevil, C. W. (2014). Listeria monocytogenes can form biofilms in tap water and enter into the viable but non-cultivable state. Microbial Ecol­ogy, 67 (3), pp. 603-611.

Giaouris, E., Chorianopoulos, N., Doulgera­ki, A. y Nychas, G. J. (2013). Co-Culture with Listeria monocytogenes within a dual-species biofilm community strong­ly increases resistance of Pseudomo­nas putida to benzalkonium chloride. PLoS ONE, 8 (10), e77276.

Giaouris, E., Heir, E., Desvaux, M., Hé­braud, M., Møretrø, T., Langsrud, S., Doulgeraki, A., Nychas, G. J., Kačániová, M., Czaczyk, K., Ölmez, H. y Simões, M. (2015). Intra- and inter-species interac­tions within biofilms of important food­borne bacterial pathogens. Frontiers in Microbiology, 6, 841.

Gingichashvili, S., Duanis-Assaf, D., Shem­esh, M., Featherstone, J. D. B., Feuer­stein, O. y Steinberg, D. (2017). Bacil­lus subtilis biofilm development - a computerized study of morphology and kinetics. Frontiers in Microbiolo­gy, 8, 2072.

Gkana, E. N., Doulgeraki, A. I., Chori­anopoulos, N. G. y Nychas, G. J. E. (2017). Anti-adhesion and anti-biofilm potential of organosilane nanoparticles against foodborne pathogens. Frontiers in Microbiology, 8, 1295.

Gomes, L. C., Deschamps, J., Briandet, R. y Mergulhão, F. J. (2018). Impact of modi­fied diamond-like carbon coatings on the spatial organization and disinfection of mixed-biofilms composed of Escherichia coli and Pantoea agglomerans industrial isolates. International Journal of Food Microbiology, 277, pp. 74-82.

González, S., Fernández, L., Campelo, A. B., Gutiérrez, D., Martínez, B., Rodríguez, A. y García, P. (2017). The behavior of Staphylococcus aureus dual-species bio­films treated with bacteriophage phiIP­LA-RODI depends on the accompanying microorganism. Applied and Environ­mental Microbiology, 83 (3), e02821-16.

Gutiérrez, D., Rodríguez-Rubio, L., Martí­nez, B., Rodríguez, A. y García, P. (2016). Bacteriophages as weapons against bac­terial biofilms in the food industry. Fron­tiers in Microbiology, 7, 825.

Gutiérrez, D., Ruas-Madiedo, P., Martínez, B., Rodríguez, A. y García, P. (2014). Effective removal of Staphylococ­cal biofilms by the endolysin LysH5. PLoS ONE, 9 (9), e107307.

Han, Q., Song, X., Zhang, Z., Fu, J., Wang, X., Malakar, P. K. Liu, H., Pan, Y. y Zhao, Y. (2017). Removal of foodborne patho­gen biofilms by acidic electrolyzed water. Frontiers in Microbiology, 8, 988.

Hayrapetyan, H., Muller, L., Tempelaars, M., Abee, T. y Nierop Groot, M. (2015). Comparative analysis of biofilm forma­tion by Bacillus cereus reference strains and undomesticated food isolates and the effect of free iron. International Journal of Food Microbiology, 200, pp. 72-79.

Heir, E., Møretrø, T., Simensen, A. y Langs­rud, S. (2018). Listeria monocytogenes strains show large variations in com­petitive growth in mixed culture bio­films and suspensions with bacteria from food processing environments. International Journal of Food Micro­biology, 275, pp. 46-55.

Herschend, J., Damholt, Z. B. V., Marquard, A. M., Svensson, B., Sørensen, S. J., Häg­glund, P. y Burmølle, M. (2017). A meta-proteomics approach to study the inter­species interactions affecting microbial biofilm development in a model com­munity. Scientific Reports, 7 (1), 16483.

Hsu, L. C., Fang, J., Borca-Tasciuc, D. A., Worobo, R. W. y Moraru, C. I. (2013). Effect of micro- and nanoscale topogra­phy on the adhesion of bacterial cells to solid surfaces. Applied and Environmen­tal Microbiology, 79 (8), pp. 2703-2712.

Huang, K., Chen, J., Nugen, S. R. y God­dard, J. M. (2016). Hybrid antifouling and antimicrobial coatings prepared by electroless co-deposition of fluo­ropolymer and cationic silica nanopar­ticles on stainless steel: efficacy against Listeria monocytogenes. ACS Applied Materials and Interfaces, 8 (25), pp. 15926-15936.

Hussain, M. S., Kwon, M., Tango, C. N. y Oh, D. H. (2018). Effect of electrolyzed water on the disinfection of Bacillus cereus biofilms: the mechanism of en­hanced resistance of sessile cells in the biofilm matrix. Journal of Food Protec­tion, 81 (5), pp. 860-869.

Hüwe, C., Schmeichel, J., Brodkorb, F., Dohlen, S., Kalbfleisch, K., Kreyen­schmidt, M., Lorenz, R. y Kreyen­schmidt, J. (2018). Potential of antimi­crobial treatment of linear low-density polyethylene with poly((tert-butyl-amino)-methyl-styrene) to reduce bio­film formation in the food industry. Bio­fouling, 34 (4), pp. 378-387.

Iliadis, I., Daskalopoulou, A., Simões, M. y Giaouris, E. (2018). Integrated com­bined effects of temperature, pH and sodium chloride concentration on bio­film formation by Salmonella enterica ser. Enteritidis and Typhimurium under low nutrient food-related conditions. Food Research International, 107, pp. 10-18.

Jahid, I. K., Lee, N.-Y., Kim, A. y Ha, S.-D. (2013). Influence of glucose concen­trations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila. Jour­nal of Food Protection, 76 (2), pp. 239- 247.

Jeon, H. R., Kwon, M. J. y Yoon, K. S. (2018). Control of Listeria innocua biofilms on food contact surfaces with slightly acid­ic electrolyzed water and the risk of bio­film cells transfer to duck meat. Journal of Food Protection, 81 (4), pp. 582-592.

Jindal, S., Anand, S., Metzger, L. y Amam­charla, J. (2018). Short communication: A comparison of biofilm development on stainless steel and modified-surface plate heat exchangers during a 17-h milk pasteurization run. Journal of Dairy Science, 101 (4), pp. 2921-2926.

Kadam, S. R., den Besten, H. M. W., van der Veen, S., Zwietering, M. H., Moezelaar, R. y Abee, T. (2013). Diversity assess­ment of Listeria monocytogenes biofilm formation: Impact of growth condition, serotype and strain origin. International Journal of Food Microbiology, 165 (3), pp. 259-264.

Kim, S., Bang, J., Kim, H., Beuchat, L. R. y Ryu, J. H. (2013). Inactivation of Esch­erichia coli O157: H7 on stainless steel upon exposure to Paenibacillus poly­myxa biofilms. International Journal of Food Microbiology, 167 (3), pp. 328- 336.

Kim, M. K., Zhao, A., Wang, A., Brown, Z. Z., Muir, T. W., Stone, H. A. y Bassler, B. L. (2017). Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. Na­ture Microbiology, 2 (8), 17080.

Kiran, G. S., Lipton, A. N., Kennedy, J., Dobson, A. D. W. y Selvin, J. (2014). A halotolerant thermostable lipase from the marine bac­terium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms. Bioengineered Bugs, 5 (5), pp. 305-318.

Larsen, M. H., Dalmasso, M., Ingmer, H., Langsrud, S., Malakauskas, M., Mader, A., Møretrø, T., Možina, S. S., Rychli, K., Wagner, R., Wallace, R. J., Zentek, J. y Jor­dan, K. (2014). Persistence of foodborne pathogens and their control in primary and secondary food production chains. Food Control, 44, pp. 92-109.

Li, J., Feng, J., Ma, L., Fuente Núñez, C. de la, Gölz, G. y Lu, X. (2017). Effects of meat juice on biofilm formation of Campylo­bacter and Salmonella. International Journal of Food Microbiology, 253, pp. 20-28.

Liu, J., Prindle, A., Humphries, J., Gabalda- Sagarra, M., Asally, M., Lee, D. Y. D., Ly, S. y Süel, G. M. (2015). Metabolic co-de­pendence gives rise to collective oscilla­tions within biofilms. Nature, 523 (7562), pp. 550-554.

Mai-Prochnow, A., Clauson, M., Hong, J. y Murphy, A. B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scien­tific Reports, 6 (1), 38610.

Makovcova, J., Babak, V., Kulich, P., Masek, J., Slany, M. y Cincarova, L. (2017). Dynamics of mono- and dual-species biofilm formation and interactions between Staphylococcus aureus and Gram-negative bacteria. Microbial Bio­technology, 10 (4), pp. 819-832.

Mariani, C., Oulahal, N., Chamba, J. F., Du­bois-Brissonnet, F., Notz, E. y Briandet, R. (2011). Inhibition of Listeria mono­cytogenes by resident biofilms present on wooden shelves used for cheese ripening. Food Control, 22 (8), pp. 1357- 1362.

Marti, R., Schmid, M., Kulli, S., Schneeberg­er, K., Naskova, J., Knøchel, S. Ahrens, C. H. y Hummerjohann, J. (2017). Biofilm formation potential of heat-resistant Escherichia coli dairy isolates and the complete genome of multidrug-resis­tant, heat-resistant strain FAM21845. Applied and Environmental Microbio­logy, 83 (15), e00628-17.

Martin, J. G. P., Oliveira e Silva, G. de, Fon­seca, C. R. da, Morales, C. B., Souza Pamplona Silva, C., Miquelluti, D. L. y Porto, E. (2016). Efficiency of a cleaning protocol for the removal of enterotoxi­genic Staphylococcus aureus strains in dairy plants. International Journal of Food Microbiology, 238, pp. 295-301.

McKenzie, K., Maclean, M., Timoshkin, I. V., Endarko, E., Macgregor, S. J. y Anderson, J. G. (2013). Photoinactivation of bacte­ria attached to glass and acrylic surfaces by 405 nm light: Potential application for biofilm decontamination. Photochem­istry and Photobiology, 89 (4), pp. 927- 935.

Montgomery, N. L. y Banerjee, P. (2015). Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in biofilms by pulsed ultraviolet light. BMC Re­search Notes, 8 (1), 235.

Moradi, M. y Tajik, H. (2017). Biofilm re­moval potential of neutral electrolysed water on pathogen and spoilage bac­teria in dairy model systems. Journal of Applied Microbiology, 123 (6), pp. 1429-1437.

Nadell, C. D., Drescher, K. y Foster, K. R. (2016). Spatial structure, cooperation and competition in biofilms. Nature Reviews Microbiology, 14 (9), pp. 589- 600.

Nam, H., Seo, H. S., Bang, J., Kim, H., Beu­chat, L. R. y Ryu, J. H. (2014). Efficacy of gaseous chlorine dioxide in inacti­vating Bacillus cereus spores attached to and in a biofilm on stainless steel. International Journal of Food Microbi­ology, 188, pp. 122-127.

Nguyen, U. T. y Burrows, L. L. (2014). DN­ase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing bio­films. International Journal of Food Mi­crobiology, 187, pp. 26-32.

Nicholas, R., Dunton, P., Tatham, A. y Field­ing, L. (2013). The effect of ozone and open air factor on surface-attached and biofilm environmental Listeria monocy­togenes. Journal of Applied Microbiol­ogy, 15 (2), pp. 555-564.

Niemira, B. A., Boyd, G. y Sites, J. (2014). Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella biofilms. Journal of Food Science, 79 (5), M917-M922.

Nowak, J., Cruz, C. D., Tempelaars, M., Abee, T., van Vliet, A. H. M., Fletcher, G. C., Hedderley, D., Palmer, J. y Flint, S. (2017). Persistent Listeria monocyto­genes strains isolated from mussel pro­duction facilities form more biofilm but are not linked to specific genetic mark­ers. International Journal of Food Mi­crobiology, 256, pp. 45-53.

Ortiz, S., López, V. y Martínez-Suárez, J. V. (2014). The influence of subminimal inhibitory concentrations of benzalko­nium chloride on biofilm formation by Listeria monocytogenes. International Journal of Food Microbiology, 189, pp. 106-112.

Overney, A., Jacques-André-Coquin, J., Ng, P., Carpentier, B., Guillier, L. y Firmesse, O. (2017). Impact of environmental fac­tors on the culturability and viability of Listeria monocytogenes under condi­tions encountered in food processing plants. International Journal of Food Mi­crobiology, 244, pp. 74-81.

Papaioannou, E., Giaouris, E. D., Berillis, P. y Boziaris, I. S. (2018). Dynamics of biofilm formation by Listeria monocy­togenes on stainless steel under mono-species and mixed-culture simulated fish processing conditions and chemical disinfection challenges. International Journal of Food Microbiology, 267, pp. 9-19.

Pasvolsky, R., Zakin, V., Ostrova, I. y Shem­esh, M. (2014). Butyric acid released during milk lipolysis triggers biofilm for­mation of Bacillus species. International Journal of Food Microbiology, 181, pp. 19-27.

Puligundla, P. y Mok, C. (2017). Potential applications of nonthermal plasmas against biofilm-associated micro-organ­isms in vitro. Journal of Applied Microbi­ology, 122 (5), pp. 1134-1148.

Røder, H. L., Raghupathi, P. K., Herschend, J., Brejnrod, A., Knøchel, S., Sørensen, S. J. y Burmølle, M. (2015). Interspe­cies interactions result in enhanced biofilm formation by co-cultures of bac­teria isolated from a food processing environment. Food Microbiology, 51, pp. 18-24.

Rodríguez-López, P., Saá-Ibusquiza, P., Mos­quera-Fernández, M. y López-Cabo, M. (2015). Listeria monocytogenes-carry­ing consortia in food industry. Compo­sition, subtyping and numerical charac­terisation of mono-species biofilm dy­namics on stainless steel. International Journal of Food Microbiology, 206, pp. 84-95.

Rosenberg, G., Steinberg, N., Oppenheimer- Shaanan, Y., Olender, T., Doron, S., Ben- Ari, J., Sirota-Madi, A, Bloom-Acker­mann, Z. y Kolodkin-Gal, I. (2016). Not so simple, not so subtle: The interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms. NPJ Biofilms and Microbiomes, 2 (1), 15027.

Sadekuzzaman, M., Yang, S., Mizan, M. F. R. y Ha, S. D. (2017). Reduction of Escherichia coli O157:H7 in biofilms using bacterio­phage BPECO 19. Journal of Food Sci­ence, 82 (6), pp. 1433-1442.

Sepehr, S., Rahmani-Badi, A., Babaie-Naiej, H. y Soudi, M. R. (2014). Unsaturated fatty acid, cis-2-decenoic acid, in com­bination with disinfectants or antibiot­ics removes pre-established biofilms formed by food-related bacteria. PLoS ONE, 9 (7), e101677.

Shafique, M., Alvi, I. A., Abbas, Z. y ur Re­hman, S. (2017). Assessment of bio­film removal capacity of a broad host range bacteriophage JHP against Pseu­domonas aeruginosa. APMIS, 125 (6), pp. 579-584.

Silva Fernandes, M. da, Kabuki, D. Y. y Kua­ye, A. Y. (2015). Behavior of Listeria monocytogenes in a multi-species bio­film with Enterococcus faecalis and En­terococcus faecium and control through sanitation procedures. International Journal of Food Microbiology, 200, pp. 5-12.

Skovager, A., Larsen, M. H., Castro-Mejia, J. L., Hecker, M., Albrecht, D., Gerth, U., Arneborg, N. y Ingmer, H. (2013). Initial adhesion of Listeria monocytogenes to fine polished stainless steel under flow conditions is determined by prior growth conditions. International Jour­nal of Food Microbiology, 165 (1), pp. 35-42.

Slany, M., Oppelt, J. y Cincarova, L. (2017). Formation of Staphylococcus aureus biofilm in the presence of sublethal concentrations of disinfectants stud­ied via a transcriptomic analysis using transcriptome sequencing (RNA-seq). Applied and Environmental Microbiol­ogy, 83 (24), e01643-17.

Son, H., Park, S., Beuchat, L. R., Kim, H. y Ryu, J. H. (2016). Inhibition of Staphy­lococcus aureus by antimicrobial bio­films formed by competitive exclusion microorganisms on stainless steel. International Journal of Food Microbi­ology, 238, pp. 165-171.

Stevens, M. R. E., Luo, T. L., Vornhagen, J., Jakubovics, N. S., Gilsdorf, J. R., Marrs, C. F., Møretrø, T. y Rickard, A. H. (2015). Coaggregation occurs between microor­ganisms isolated from different environ­ments. FEMS Microbiology Ecology, 91 (11), fiv123.

Tack, I. L. M. M., Nimmegeers, P., Akker­mans, S., Hashem, I. y van Impe, J. F. M. (2017). Simulation of Escherichia coli dynamics in biofilms and submerged colonies with an individual-based model including metabolic network information. Frontiers in Microbiol­ogy, 8, 2509.

Tarifa, M. C., Genovese, D., Lozano, J. E. y Brugnoni, L. I. (2018). In situ micro­structure and rheological behavior of yeast biofilms from the juicprocessing industries. Biofouling, 34 (1), pp. 74-85.

Techaruvichit, P., Takahashi, H., Kuda, T., Miya, S., Keeratipibul, S. y Kimura, B. (2016). Adaptation of Campylobacter jejuni to biocides used in the food in­dustry affects biofilm structure, adhe­sion strength, and cross-resistance to clinical antimicrobial compounds. Bio­fouling, 32 (7), pp. 827-839.

Turonova, H., Briandet, R., Rodrigues, R., Hernould, M., Hayek, N., Stintzi, A., Pazlarova, J. y Tresse, O. (2015). Bio­film spatial organization by the emerg­ing pathogen Campylobacter jejuni: Comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions. Frontiers in Microbiology, 6, 709.

Visvalingam, J., Ells, T. C. y Yang, X. (2017). Impact of persistent and nonpersistent generic Escherichia coli and Salmo­nella sp. recovered from a beef pack­ing plant on biofilm formation by E. coli O157. Journal of Applied Microbiology, 123 (6), pp. 1512-1521.

Vogeleer, P., Tremblay, Y. D. N., Jubelin, G., Jacques, M. y Harel, J. (2016). Biofilm-forming abilities of Shiga toxin-produc­ing Escherichia coli isolates associated with human infections. Applied and Environmental Microbiology, 82 (5), pp. 1448-1458.

Wang, R., Kalchayanand, N., Schmidt, J. W. y Harhay, D. M. (2013). Mixed biofilm formation by Shiga Toxin–Producing Escherichia coli and Salmonella enterica Serovar Typhimurium enhanced bacte­rial resistance to sanitization due to ex­tracellular polymeric substances. Jour­nal of Food Protection, 76 (9), pp. 1513- 1522.

Wang, J., Ray, A. J., Hammons, S. R. y Oliver, H. F. (2015). Persistent and transient Lis­teria monocytogenes strains from retail deli environments vary in their ability to adhere and form biofilms and rarely have inlA premature stop codons. Food­borne Pathogens and Disease, 12 (2), pp. 151-158.

Xue, T., Chen, X. y Shang, F. (2014). Short communication: Effects of lactose and milk on the expression of biofilm-as­sociated genes in Staphylococcus au­reus strains isolated from a dairy cow with mastitis. Journal of Dairy Science, 97 (10), pp. 6129-6134.

Yu, S., Su, T., Wu, H., Liu, S., Wang, D., Zhao, T., Jin, Z., Du, W., Zhu, M.-J., Chua, S. L., Yang, L., Zhu, D., Gu, L. y Ma, L. Z. (2015). PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. Cell Research, 25 (12), pp. 1352-1367.

Zhao, T., Podtburg, T. C., Zhao, P., Chen, D., Baker, D. A., Cords, B. y Doyle, M. P. (2013). Reduction by competitive bacteria of Listeria monocytogenes in biofilms and Listeria bacteria in floor drains in a ready-to-eat poultry pro­cessing plant. Journal of Food Protec­tion, 76 (4), pp. 601-607.

Ziuzina, D., Boehm, D., Patil, S., Cullen, P. J. y Bourke, P. (2015). Cold plasma inactiva­tion of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS ONE, 10 (9), e0138209.




Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista arbor@csic.es

Soporte técnico soporte.tecnico.revistas@csic.es