De la Cristalografía a la biología estructural, un siglo de descubrimientos

Autores/as

  • Guillermo Montoya University of Copenhagen. NNF Center for Protein Research

DOI:

https://doi.org/10.3989/arbor.2015.772n2003

Palabras clave:

biofísica, biología estructural, biología molecular, complejos macromoleculares, cristalización, cristalografía de rayos-X, microscopía electrónica

Resumen


La cristalografía, la técnica más ampliamente usada para estudiar la estructura de la materia, ha evolucionado en las ciencias de la vida hacia la biología estructural, una exitosa área de investigación encaminada a comprender el funcionamiento de los procesos celulares. La aplicación de aproximaciones físicas a sistemas biológicos es clave para entender la estructura y funcionamiento de los componentes de los organismos. En este artículo el autor ofrece al lector un paseo por la evolución de esta área de conocimiento durante el siglo XX, desde su nacimiento hasta el análisis de grandes complejos macromoleculares, protagonistas importantes en diversos procesos biológicos. La influencia de investigaciones en física, bioquímica y biología molecular ha sido clave para los numerosos éxitos alcanzados por biólogos estructurales. El autor sostiene que el futuro de esta disciplina pasa por la integración de sus resultados a un nivel celular además de emplear metodologías más cuantitativas para la descripción de procesos biológicos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ben-Shem, A., Garreau de Loubresse, N., Melnikov, S., Jenner, L., Yusupova, G., Yusupov, M. (2011). The structure of the eukaryotic ribosome at 3.0 Å resolution. Science, 334, pp. 1524-1529.

Berger, I., Fitzgerald, D. J. and Richmond, T. J. (2004). Baculovirus expression system for heterologous multiprotein complexes. Nature Biotechnology, 22, pp. 1583-1587.http://dx.doi.org/10.1038/nbt1036 PMid:15568020

Bernal, J. D. and Crowfoot, D. (1934). X-Ray photographs of crystalline pepsin. Nature, 133, pp. 794-795.http://dx.doi.org/10.1038/133794b0

Blake, C. C. F., Koenig, D. F., Mair, G. A., North, A. C. T., Phillips, D. C. and Sarma, V. R. (1965). Structure of Hen Egg-White Lysozyme: A Three-dimensional Fourier Synthesis at 2 Å Resolution. Nature, 206, pp. 757-761.http://dx.doi.org/10.1038/206757a0 PMid:5891407

Chance, R. E., Kroeff, E. P., Hoffmann, J. A. and Frank, B. H. (1981). Chemical, physical, and biologic properties of biosynthetic human insulin. Diabetes Care, 4, pp. 147–154.http://dx.doi.org/10.2337/diacare.4.2.147 PMid:7011716

Chapman, H. N., Fromme, P., Barty, A., White, T. H., Kirian, R. A., Aquila, A., Hunter, M. S., Schulz, J., DePonte, D. P., Weierstall, U., Doak, R. B., Maia, F. R. N. C. Martin, A. V., Schlichting, I., Lomb, L., Coppola, N., Shoeman, R. L., Epp, S. W., Hartmann, R., Rolles, D., Rudenko, A., Foucar, L., Kimmel, N., Weidenspointner, G., Holl, P., Liang, M., Barthelmess, M., Caleman, C., Boutet, S., Bogan, M. J., Krzywinski, J., Bostedt, C., Bajt, S., Gumprecht, L., Rudek, B., Erk, B., Schmidt, C., Hömke, A., Reich, C., Pietschner, D., Strüder, L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S., Schaller, G., Schopper, F., Soltau, H., Kühnel, K. U., Messerschmidt, M., Bozek, J. D., Hau-Riege, S. P., Frank, M., Hampton, C. Y., Sierra, R. G., Starodub, D., Williams, G. J., Hajdu, J., Timneanu, N., Seibert, M. M., Andreasson, J., Rocker, A., Jönsson, O., Svenda, M., Stern, S., Nass, K., Andritschke, R., Schröter, C. D., Krasniqi, F., Bott, M., Schmidt, K. E., Wang, X., Grotjohann, I., Holton, J. M., Barends, T. R. M., Neutze, R., Marchesini, S., Fromme, R., Schorb, S., Rupp, D., Adolph, M., Gorkhover, T., Andersson, I., Hirsemann, H., Potdevin, G., Graafsma, H., Nilsson, B., Spence, J. C. H. (2011). Femtosecond X-ray protein nanocrystallography. Nature, 470, pp. 73-77.http://dx.doi.org/10.1038/nature09750 PMid:21293373 PMCid:PMC3429598

Clemons, W. M. Jr., Brodersen, D. E., McCutcheon, J. P., May, J. L., Carter, A. P., Morgan-Warren, R. J., Wimberly, B. T. and Ramakrishnan, V. (2001). Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: purification, crystallization and structure determination. Journal of Molecular Biology, 310, pp. 827-843.http://dx.doi.org/10.1006/jmbi.2001.4778 PMid:11453691

Cramer, P., Bushnell, D. A., Fu, J., Gnatt, A. L., Maier-Davis, B., Thompson, N. E., Burgess, R. R., Edwards, A. M., David, P. R. and Kornberg, R. D. (2000). Architecture of RNA polymerase II and implications for the transcription mechanism. Science, 288, pp. 640-649.http://dx.doi.org/10.1126/science.288.5466.640 PMid:10784442

Edwards, A. M., Darst, S. A., Feaver, W. J., Thompson, N. E., Burgess, R. R. and Kornberg, R. D. (1990). Purification and lipid-layer crystallization of yeast RNA polymerase II. Proceedings of the National Academy of Sciences of the USA, 87, pp. 2122-2126.http://dx.doi.org/10.1073/pnas.87.6.2122 PMid:2179949 PMCid:PMC53638

Franklin, R. E. and Gosling, R. G. (1953). Molecular Configuration of Sodium Thymonucleate. Nature, 171, pp. 740-741. http://dx.doi.org/10.1038/171740a0http://dx.doi.org/10.1038/171740a0

Goeddel, D. V., Kleid, D. G., Bolivar, F., Heyneker, H. L., Yansura, D. G., Crea, R., Hirose, T., Kraszewski, A., Itakura, K. and Riggs, A. D. (1979). Expression in Escherichia coli of chemically synthesized genes for human insulin. Proceedings of the National Academy of Sciences of the USA, 76, pp. 106-110.http://dx.doi.org/10.1073/pnas.76.1.106 PMid:85300 PMCid:PMC382885

Grutter, M. G., Marki, W. and Walliser, H. P. (1985). Crystals of the complex between recombinant N-acetyleglin c and subtilisin. Journal of Biological Chemistry, 260, pp. 11436–11437.

Itakura, K., Hirose, T., Crea, R., Riggs, A. D., Heyneker, H. L., Bolivar, F. and Boyer, H. W. (1977). Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science, 198, pp. 1056-1063.http://dx.doi.org/10.1126/science.412251 PMid:412251

Johansson, L. C., Arnlund, D., White, T. A., Katona, G., DePonte, D. P., Weierstall, U., Doak, R. B., Shoeman, R. L., Lomb, L., Malmerberg, E., Davidsson, J., Nass, K., Liang, M., Andreasson, J., Aquila, A., Bajt, S., Barthelmess, M., Barty, A., Bogan, M. J., Bostedt, C., Bozek, J. D., Caleman, C., Coffee, R., Coppola, N., Ekeberg, T., Epp, S. W., Erk, B., Fleckenstein, H., Foucar, L., Graafsma, H., Gumprecht, L., Hajdu, J., Hampton, C. Y., Hartmann, R., Hartmann, A., Hauser, G., Hirsemann, H., Holl, P., Hunter, M. S., Kassemeyer, S., Kimmel, N., Kirian, R. A., Maia, F. R. N. C., Marchesini, S., Martin, A. V., Reich, C., Rolles, D., Rudek, B., Rudenko, A., Schlichting, I., Schulz, J., Seibert, M. M., Sierra, R. G., Soltau, H., Starodub, D., Stellato, F., Stern, S., Stru.der, L., Timneanu, N., Ullrich, J., Wahlgren, W. Y., Wang, X., Weidenspointner, G., Wunderer, C., Fromme, P., Chapman, H. N., Spence, J. C. H. and Neutze, R. (2012). Lipidic phase membrane protein serial femtosecond crystallography. Nature Methods, 9, pp. 263-265.http://dx.doi.org/10.1038/nmeth.1867 PMid:22286383 PMCid:PMC3438231

Jordan, P., Fromme, P., Witt, H. T., Klukas, O., Saenger, W. and Krauss, N. (2001). Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature, 411, pp. 909-917.http://dx.doi.org/10.1038/35082000 PMid:11418848

Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H. and Phillips, D. C. (1958). A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis. Nature, 181, pp. 662-666.http://dx.doi.org/10.1038/181662a0 PMid:13517261

Laue, Max von (1913). Kritische Bemerkungen zu den Deutungen der Photogramme von Friedrich und Knipping. Physikalische Zeitschrift, 14, pp. 421-423.

Lesley, S. A., Kuhn, P., Godzik, A., Deacon, A. M., Mathews, I., Kreusch, A., Spraggon, G., Klock, H. E., McMullan, D., Shin, T., Vincent, J., Robb, A., Brinen, L. S., Miller, M. D., McPhillips, T. M., Miller, M. A., Scheibe, D., Canaves, J. M., Guda, C., Jaroszewski, L., Selby, T. L., Elsliger, M. A., Wooley, J., Taylor, S. S., Hodgson, K. O., Wilson, I. A., Schultz, P. G. and Stevens, R. C. (2002). Structural genomics of the Thermotoga maritime proteome implemented in a high-throughput structure determination pipeline. Proceedings of the National Academy of Sciences of the USA, 99. pp. 11664-11669.http://dx.doi.org/10.1073/pnas.142413399 PMid:12193646 PMCid:PMC129326

Maier, T., Jenni, S. and Ban, N. (2006). Architecture of mammalian fatty acid synthase at 4.5 Å resolution. Science, 311, pp. 1258-1262.

Makde, R. D., England, J. R., Yennawar, H. P. and Tan, S. (2010). Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature, 467, pp. 562-566. http://dx.doi.org/10.1038/nature09321http://dx.doi.org/10.1038/nature09321

Matsuda, S., Kawano, G., Itoh, S., Mitsui, Y. and Iitaka, Y. (1986). Crystallization and preliminary X-ray studies of recombinant murine interferon-β. Journal of Biological Chemistry, 261, pp. 16207–16209.

McMullan, G., Chen, S., Henderson, R. and Faruqi, A. R. (2009). Detective quantum efficiency of electron area detectors in electron microscopy. Ultramicroscopy, 109, pp. 1126-1143. http://dx.doi.org/10.1016/j.ultramic.2009.04.002http://dx.doi.org/10.1016/j.ultramic.2009.04.002

Miller, D. L., Kung, H. F., Staehelin, T. and Pestka, S. (1981). The crystallization of recombinant human leukocyte interferon A. Methods Enzymology, 79, pp. 3–7. http://dx.doi.org/10.1016/S0076-6879(81)79005-0http://dx.doi.org/10.1016/S0076-6879(81)79005-0

Miller, D. L., Kung, H. F. and Pestka, S. (1982). Crystallization of recombinant human leukocyte interferon A. Science, 215, pp. 689–690.http://dx.doi.org/10.1126/science.6173922 PMid:6173922

Morrow, J. F., Cohen, S. N., Chang, A. C., Boyer, H. W., Goodman, H. M. and Helling, R. B. (1974). Replication and transcription of eukaryotic DNA in Escherichia coli. Proceedings of the National Academy of Sciences of the USA, 71, pp. 1743-1747.http://dx.doi.org/10.1073/pnas.71.5.1743 PMid:4600264 PMCid:PMC388315

Mueller M., Wang M. and Schulze-Briese C. (2012). Optimal fine φ-slicing for single-photon-counting pixel detectors. Acta Crystallographica D Biological Crystallography, 68, pp. 42-56.http://dx.doi.org/10.1107/S0907444911049833 PMid:22194332 PMCid:PMC3245722

Mullis, K. B., Erlich, H. A., Arnheim, N., Horn, G. T., Saiki, R. K. and Scharf, S. J. (1987). Process for amplifying, detecting, and/or-cloning nucleic acid sequences. U.S. Patent 4,683,195. Mullis, K. B. (1990). Process for amplifying nucleic acid sequences. U.S. Patent 4,683,202.

Muñoz, I. G., Yébenes, H., Zhou, M., Mesa, P., Serna, M., Park, A. Y., Bragado-Nilsson, E., Beloso, A., de Cárcer, G., Malumbres, M., Robinson, C. V., Valpuesta, J. M. and Montoya, G. (2011). Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nature Structural & Molecular Biology, 18, pp. 14-19.http://dx.doi.org/10.1038/nsmb.1971 PMid:21151115

Perutz, M. F., Rossmann, M. G., Cullis, A. F., Muirhead, H., Will, G. and North, A. C. T. (1960). Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis. Nature, 185, pp. 416-422.

Pomeranz-Krummel, D. A., Oubridge, C., Leung, A. K., Li, J., Nagai, K. (2009). Crystal structure of human spliceosomal U1 snRNP at 5.5 Å resolution. Nature, 458, pp. 475-480.http://dx.doi.org/10.1038/nature07851 PMid:19325628 PMCid:PMC2673513

Roberts, R. J. (2005). How restriction enzymes became the workhorses of molecular biology. Proceedings of the National Academy of Sciences of the USA, 102, pp. 5905-5908.http://dx.doi.org/10.1073/pnas.0500923102 PMid:15840723 PMCid:PMC1087929

Sali, A., Kuriyan, J. (1999).Challenges at the frontiers of structural biology. Trends in Cell Biology, 9, pp. M20-M24.http://dx.doi.org/10.1016/S0962-8924(99)01685-2

Sibanda, B. L., Chirgadze, D. Y. and Blundell, T. L. (2010). Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats. Nature, 463, pp. 118-121.http://dx.doi.org/10.1038/nature08648 PMid:20023628 PMCid:PMC2811870

Śledź, P., Unverdorben, P., Beck, F., Pfeifer, G., Schweitzer, A., Förster, F. and Baumeister, W. (2013). Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proceedings of the National Academy of Sciences of the USA, 110, pp. 7264-7769.http://dx.doi.org/10.1073/pnas.1305782110 PMid:23589842 PMCid:PMC3645540

Watson, J. D. and Crick, F. H. (1953a). Molecular structure of nucleic acids, a structure for deoxyribose nucleic acid. Nature, 171, pp. 737-738.

Watson, J. D. and Crick, F. H. (1953b). Genetical implications of the structure of deoxyribonucleic acid. Nature, 171, pp. 964-967.

Wilkins, M. H. F., Stokes, A. R. and Wilson, H. R. (1953). Molecular Structure of Nucleic Acids: Molecular Structure of Deoxypentose Nucleic Acids. Nature, 171, pp. 738-740.http://dx.doi.org/10.1038/171738a0 PMid:13054693

Publicado

2015-04-30

Cómo citar

Montoya, G. (2015). De la Cristalografía a la biología estructural, un siglo de descubrimientos. Arbor, 191(772), a217. https://doi.org/10.3989/arbor.2015.772n2003

Número

Sección

Artículos