Bioconservación frente a patógenos de transmisión alimentaria en frutas y hortalizas mínimamente procesadas

Autores/as

DOI:

https://doi.org/10.3989/arbor.2020.795n1007

Palabras clave:

cultivos protectores, bacteriocinas, bacteriófagos, IV gama, seguridad microbiológica

Resumen


El aumento en la producción y consumo de frutas y hortalizas mínimamente procesadas de los últimos años ha con­tribuido a incrementar las toxiinfecciones alimentarias asociadas al consumo de productos vegetales frescos. Esto es debido a que los tratamientos desinfectantes llevados a cabo actualmente por industria de IV gama son insuficientes para garantizar la seguridad microbiológica de los productos finales, y además estos no reciben ningún tratamiento capaz de eliminar todos los patógenos antes de su consumo. Por lo tanto, es necesario utilizar estrategias al­ternativas para reducir los microorganismos patógenos y alteran­tes en frutas y hortalizas. La bioconservación, mediante el uso de microorganismos o sus metabolitos, es una alternativa que, en combinación con las prácticas habituales, puede reducir o prevenir el crecimiento de patógenos en productos mínimamente procesa­dos, mejorando su calidad microbiológica. En este artículo se pre­sentan los resultados más relevantes sobre la bioconservación de frutas y hortalizas mínimamente procesadas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abadias, M., Altisent, R., Usall, J., Torres, R., Oliveira, M. y Viñas, I. (2014). Biopre­servation of fresh-cut melon using the strain Pseudomonas graminis CPA-7. Postharvest Biology and Technology, 96, pp. 69-77. https://doi.org/10.1016/j.postharvbio.2014.05.010

Abadias, M., Usall, J., Alegre, I., Torres, R. y Viñas, I. (2009). Fate of Escherichia coli in apple and reduction of its growth using the postharvest biocontrol agent Can­dida sake CPA-1. Journal of the Science of Food and Agriculture, 89 (9), pp. 1526-1533. https://doi.org/10.1002/jsfa.3619

Abuladze, T., Li, M., Menetrez, M. Y., Dean, T., Senecal, A. y Sulakvelidze, A. (2008). Bacteriophages reduce experimental contamination of hard surfaces, to­mato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Ap­plied and Environmental Microbiology, 74 (20), pp. 6230-6238. https://doi.org/10.1128/AEM.01465-08 PMid:18723643 PMCid:PMC2570303

Alegre, I., Viñas, I., Usall, J., Anguera, M. y Abadias, M. (2011). Microbiological and physicochemical quality of fresh-cut apple enriched with the probiotic strain Lactobacillus rhamnosus GG. Food MiMi­crobiology, 28 (1), pp. 59-66. https://doi.org/10.1016/j.fm.2010.08.006 PMid:21056776

Alegre, I., Viñas, I., Usall, J., Anguera, M., Al­tisent, R. y Abadias, M. (2013). Antagonis­tic effect of Pseudomonas graminis CPA-7 against foodborne pathogens in fresh-cut apples under simulated commercial conditions. Food Microbiology, 33 (2), pp. 139-148. https://doi.org/10.1016/j.fm.2012.09.007 PMid:23200645

Alegre, I., Viñas, I., Usall, J., Anguera, M., Figge, M. J., Abadias, M. (2012). An En­terobacteriaceae species isolated from apples controls foodborne pathogens on fresh-cut apples and peaches. Post­harvest Biology and Technology, 74, pp. 118-124. https://doi.org/10.1016/j.postharvbio.2012.07.004

Alegre, I., Viñas, I., Usall, J., Teixidó, N., Figge, M. J. y Abadias, M. (2013). Control of foodborne pathogens on fresh-cut fruit by a novel strain of Pseudomonas grami­nis. Food Microbiology, 34, pp. 390-399. https://doi.org/10.1016/j.fm.2013.01.013 PMid:23541207

Allende, A., Martínez, B., Selma, V., Gil, M. I., Suárez, J. E. y Rodríguez, A. (2007). Growth and bacteriocin production by lactic acid bacteria in vegetable broth and their effectiveness at reducing Listeria monocytogenes in vitro and in fresh-cut lettuce. Food Microbiolo­gy, 24 (7-8), pp. 759-766. https://doi.org/10.1016/j.fm.2007.03.002 PMid:17613374

Artés, F., Gómez, P., Aguayo, E., Escalo­na, V. y Artés-Hernández, F. (2009). Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biology and Technology, 51 (3), pp. 287-296. https://doi.org/10.1016/j.postharvbio.2008.10.003

Barbosa, A. A. T., Araújo, H. G. S. de, Matos, P. N., Carneloss, M. A. G. y Castro, A. A. de (2013). Effects of nisin-incorporated films on the microbiological and physi­cochemical quality of minimally pro­cessed mangoes. International Journal of Food Microbiology, 164 (2-3), pp. 135-140. https://doi.org/10.1016/j.ijfoodmicro.2013.04.004 PMid:23673058

Bari, M. L., Ukuku, D. O., Kawasaki, T., Inat­su, Y., Isshiki, K. y Kawamoto, S. (2005). Combined efficacy of nisin and pediocin with sodium lactate, citric acid, phytic acid, and potassium sorbate and EDTA in reducing the Listeria monocytogenes population of inoculated fresh-cut produce. Journal of Food Protection, 68 (7), pp. 1381-1387. https://doi.org/10.4315/0362-028X-68.7.1381 PMid:16013374

Bennik, M. H. J., van Overbeek, W., Smid, E. J. y Gorris, L. G. M. (1999). Biopreser­vation in modified atmosphere stored mungbean sprouts: The use of vegeta­ble-associated bacteriocinogenic lac­tic acid bacteria to control the growth of Listeria monocytogenes. Letters in Applied Microbiology, 28 (3), pp. 226- 232. https://doi.org/10.1046/j.1365-2672.1999.00497.x PMid:10196774

Boyacioglu, O., Sharma, M., Sulakvelidze, A. y Goktepe, I. (2013). Biocontrol of Esch­erichia coli O157:H7 on fresh-cut leafy greens. Bacteriophage, 3 (1), e24620. https://doi.org/10.4161/bact.24620 PMid:23819107 PMCid:PMC3694058

Brüssow, H. y Kutter, E. (2005). Phage ecol­ogy. En: Kutter, E. y Sulakvelidze, A. (eds.). Bacteriophages: biology and applications. Florida: Boca Raton CRC Press, pp. 129-163. https://doi.org/10.1201/9780203491751.ch6

Chen, H. y Hoover, D. G. (2003). Bacterio­cins and their food applications. Com­prehensive Reviews in Food Science and Food Safety, 2 (3), pp. 82-100. https://doi.org/10.1111/j.1541-4337.2003.tb00016.x PMid:33451234

Cobo-Molinos, A., Abriouel, H., Ben Omar, N., Valdivia, E., López, R. L., Maqueda, M., Martínez Cañamero, M. y Gálvez, A. (2005). Effect of immersion solutions con­taining enterocin AS-48 on Listeria mono­cytogenes in vegetable foods. Applied and Environmental Micorbiology, 71 (12), pp. 7781-7787. https://doi.org/10.1128/AEM.71.12.7781-7787.2005 PMid:16332751 PMCid:PMC1317399

Collazo, C., Abadias, M., Aguiló-Aguayo, I., Alegre, I., Chenoll, E. y Viñas, I. (2017). Studies on the biocontrol mechanisms of Pseudomonas graminis strain CPA- 7 against food-borne pathogens in vitro and on fresh-cut melon. LWT - Food Science and Technology, 85, pp. 301-308. https://doi.org/10.1016/j.lwt.2017.02.029

Collazo, C., Abadias, M., Colás-Medà, P., Iglesias, M. B., Granado-Serrano, A. B., Serrano, J. y Viñas, I. (2017). Effect of Pseudomonas graminis strain CPA-7 on the ability of Listeria monocytogenes and Salmonella enterica subsp. enterica to colonize Caco-2 cells after pre-incu­bation on fresh-cut pear. International Journal of Food Microbiology, 262, pp. 55-62. https://doi.org/10.1016/j.ijfoodmicro.2017.09.003 PMid:28964998

Collazo, C., Giné-Bordonaba, J., Aguiló- Aguayo, I., Povedano, I., Bademunt, A. y Viñas, I. (2018). Pseudomonas grami­nis strain CPA-7 differentially modulates the oxidative response in fresh-cut 'Golden delicious' apple depending on the storage conditions. Postharvest Biology and Technology, 138, pp. 46- 55. https://doi.org/10.1016/j.postharvbio.2017.12.013

Cotter, P. D., Hill, C. y Ross, P. (2005). Bac­teriocins: developing innate immunity for food. Nature Reviews. Microbiol­ogy, 3 (10), pp. 777-788. https://doi.org/10.1038/nrmicro1273 PMid:16205711

European Food Safety Authority and Euro­pean Centre for Disease Prevention and Control (EFSA and ECDC) (2018). The Eu­ropean Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA Journal, 16 (12), e05500. https://doi.org/10.2903/j.efsa.2018.5500 PMid:32625785 PMCid:PMC7009540

EFSA Panel on Biological Hazards (BIOHAZ) (2016). Evaluation of the safety and ef­ficacy of Listex™ P100 for reduction of pathogens on different ready-to-eat (RTE) food products. EFSA Journal, 14 (8), e04565. https://doi.org/10.2903/j.efsa.2016.4565

Faleiro, M. L. (2010). The mode of antibac­terial action of essential oils. Science against microbial pathogens: communi­cating current research and technologi­cal advances, 2, pp. 1143-1156.

Fliss, I., Hammami, R. y Le Lay, C. (2011). Biological control of human digestive microbiota using antimicrobial cultures and bacteriocins. En Lacroix, C (ed.). Protective cultures, antimicrobial me­tabolites and bacteriophages for food and beverage biopreservation. Cam­bridge, U. K.: Woodhead Publishing, pp. 240-263. https://doi.org/10.1533/9780857090522.2.240

Francis, G. A. y O'Beirne, D. (1997). Effects of gas atmosphere, antimicrobial dip and temperature on the fate of Listeria innocua and Listeria monocytogenes on minimally processed lettuce. Interna­tional Journal of Food Science and Tech­nology, 32 (2), pp. 141-151. https://doi.org/10.1046/j.1365-2621.1997.00390.x

Gil, M. I., Selma, M. V., López-Gálvez, F. y Allende, A. (2009). Fresh-cut product sanitation and wash water disinfection: Problems and solutions. International Journal of Food Microbiology, 134 (1-2), pp. 37-45. https://doi.org/10.1016/j.ijfoodmicro.2009.05.021 PMid:19539390

Gragg, S. E. y Brashears, M. M. (2010). Reduction of Escherichia coli O157:H7 in fresh spinach, using lactic acid bac­teria and chlorine as a multihurdle intervention. Journal of Food Protec­tion 73 (2), pp. 358-361. https://doi.org/10.4315/0362-028X-73.2.358 PMid:20132683

Holzapfel, W. H., Geisen, R. y Schillinger, U. (1995). Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. International Journal of Food Microbi­ology, 24 (3), pp. 343-362. https://doi.org/10.1016/0168-1605(94)00036-6

Iglesias, M. B., Abadias, M., Anguera, M., Sabata, J. y Viñas, I. (2017). Antagonis­tic effect of probiotic bacteria against foodborne pathogens on fresh-cut pear. LWT-Food Science and Technology, 81, pp. 243-249. https://doi.org/10.1016/j.lwt.2017.03.057

Iglesias, M. B., Abadias, M., Anguera, M. y Viñas, I. (2018). Efficacy of Pseudo­monas graminis CPA-7 against Salmo­nella spp. and Listeria monocytogenes on fresh-cut pear and setting up of the conditions for its commercial ap­plication. Food Microbiology, 70, pp. 103-112. https://doi.org/10.1016/j.fm.2017.09.010 PMid:29173616

Iglesias, M. B., Echeverría, G., Viñas, I., López, M. L. y Abadias, M. (2018). Bio­preservation of fresh-cut pear using Lactobacillus rhamnosus GG and effect on quality and volatile compounds. LWT - Food Science and Technology, 87, pp. 581-588. https://doi.org/10.1016/j.lwt.2017.09.025

Iglesias, M. B., López, M. L., Echeverría, G., Viñas, I., Zudaire, L. y Abadias, M. (2018). Evaluation of biocontrol capac­ity of Pseudomonas graminis CPA-7 against foodborne pathogens on fresh-cut pear and its effect on fruit volatile compounds. Food Microbiology, 76, pp. 226-236. https://doi.org/10.1016/j.fm.2018.04.007 PMid:30166146

Iglesias, M. B., Viñas, I., Colás-Medà, P., Collazo, C., Serrano, J. C. E. y Abadias, M. (2017). Adhesion and invasion of Listeria monocytogenes and interac­tion with Lactobacillus rhamnosus GG after habituation on fresh-cut pear. Journal of Functional Foods, 34, pp. 453-460. https://doi.org/10.1016/j.jff.2017.05.011

Komitopoulou, E., Boziaris, I. S., Davies, E. A., Delves-Broughton, J. y Adams, M. R. (1999). Alicyclobacillus acidoter­restris in fruit juices and its control by nisin. International Journal of Food Science and Technology, 34 (1), pp. 81-85. https://doi.org/10.1046/j.1365-2621.1999.00243.x

Leverentz, B., Conway, W. S., Alavidze, Z., Janisiewicz, W. J., Fuchs, Y., Camp, M. J., Chighladze, E. y Sulakvelidze, A. (2001). Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: A model study. Journal of Food Protection, 64 (8), pp. 1116- 1121. https://doi.org/10.4315/0362-028X-64.8.1116 PMid:11510645

Leverentz, B., Conway, W. S., Camp, M. J., Janisiewicz, W. J., Abuladze, T., Yang, M., Saftner, R. y Sulakvelidze, A. (2003). Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Applied and Environmental Microbiol­ogy, 69 (8), pp. 4519-4526. https://doi.org/10.1128/AEM.69.8.4519-4526.2003 PMid:12902237 PMCid:PMC169090

Leverentz, B., Conway, W. S., Janisiewicz, W., Abadias, M., Kurtzman, C. P. y Camp, M. J. (2006). Biocontrol of the food-borne pathogens Listeria mono­cytogenes and Salmonella enterica se­rovar Poona on fresh-cut apples with naturally occurring bacterial and yeast antagonists. Applied and Environmen­tal Microbiology, 72 (2), pp. 1135- 1140. https://doi.org/10.1128/AEM.72.2.1135-1140.2006 PMid:16461659 PMCid:PMC1392892

Liao, C. y Fett, W. F. (2001). Analysis of na­tive microflora and selection of strains antagonistic to human pathogens on fresh produce. Journal of Food Protec­tion, 64 (8), pp. 1110-1115. https://doi.org/10.4315/0362-028X-64.8.1110 PMid:11510644

López Aguayo, M. D. C., Grande Burgos, M. J., Pérez Pulido, R., Gálvez, A. y Lu­cas López, R. (2016). Effect of different activated coatings containing enterocin AS-48 against Listeria monocytogenes on apple cubes. Innovative Food Sci­ence and Emerging Technologies, 35, pp. 177-183. https://doi.org/10.1016/j.ifset.2016.05.006

Magnone, J. P., Marek, P. J., Sulakvelidze, A. y Senecal, A. G. (2013). Additive ap­proach for inactivation of Escherichia coli O157:H7, Salmonella, and Shigella spp. on contaminated fresh fruits and veg­etables using bacteriophage cocktail and produce wash. Journal of Food Protec­tion, 76 (8), pp. 1336-1341. https://doi.org/10.4315/0362-028X.JFP-12-517 PMid:23905788

McAuliffe, O., Ross, R. y Hill, C. (2001). Lan­tibiotics: structure, biosynthesis and mode of action. FEMS Microbiology Reviews, 25 (3), pp. 285-308. https://doi.org/10.1111/j.1574-6976.2001.tb00579.x PMid:11348686

McManamon, O., Kaupper, T., Scollard, J. y Schmalenberger, A. (2019). Nisin application delays growth of Listeria monocytogenes on fresh-cut iceberg lettuce in modified atmosphere pack­aging, while the bacterial community structure changes within one week of storage. Postharvest Biology and Tech­nology 147, pp. 185-195. https://doi.org/10.1016/j.postharvbio.2018.10.002

Mondragón Preciado, G., Escalante Minaka­ta, P., Osuna Castro, J. A., Ibarra Junque­ra, V. I., Morlett Chávez, J. A., Aguilar González, C. N. y Rodriguez Herrera, R. (2013). Bacteriocinas: características y aplicación en alimentos. Investigación y Ciencia de La Universidad Autónoma de Aguascalientes, 21 (59), pp. 63-69.

Moye, Z. D., Woolston, J. y Sulakvelidze, A. (2018). Bacteriophage applications for food production and processing. Viruses, 10 (4), pp. 205. https://doi.org/10.3390/v10040205 PMid:29671810 PMCid:PMC5923499

Narsaiah, K., Wilson, R. A., Gokul, K., Man­dge, H. M., Jha, S. N., Bhadwal, S., Anurag, R. K., Malik, R, K. […] y Vij, S. (2015). Effect of bacteriocin-incorpo­rated alginate coating on shelf-life of minimally processed papaya (Carica pa­paya L.). Postharvest Biology and Tech­nology, 100, pp. 212-218. https://doi.org/10.1016/j.postharvbio.2014.10.003

Oliveira, M., Abadias, M., Colás-Medà, P., Usall, J. y Viñas, I. (2015). Biopreserva­tive methods to control the growth of foodborne pathogens on fresh-cut let­tuce. International Journal of Food Mi­crobiology, 214, pp. 4-11. https://doi.org/10.1016/j.ijfoodmicro.2015.07.015 PMid:26210531

Oliveira, M., Viñas, I., Colàs, P., Anguera, M., Usall, J. y Abadias, M. (2014). Effective­ness of a bacteriophage in reducing Lis­teria monocytogenes on fresh-cut fruits and fruit juices. Food Microbiology, 38, pp. 137-142. https://doi.org/10.1016/j.fm.2013.08.018 PMid:24290636

Ongeng, D., Ryckeboer, J., Vermeulen, A. y Devlieghere, F. (2007). The effect of micro-architectural structure of cab­bage substratum and or background bacterial flora on the growth of Listeria monocytogenes. International Journal of Food Microbiology, 119 (3), pp. 291- 299. https://doi.org/10.1016/j.ijfoodmicro.2007.08.022 PMid:17910986

Ramos, B., Miller, F. A., Brandao, T. R. S., Teixeria, P. y Silva, C. L. M. (2013). Fresh fruits and vegetables: an overview on applied methodologies to improve its quality and safety. Innovative Food Sci­ence and Emerging Technologies, 20, pp. 1-15. https://doi.org/10.1016/j.ifset.2013.07.002

Randazzo, C. L., Pitino, I., Scifò, G. O. y Ca­ggia, C. (2009). Biopreservation of mini­mally processed iceberg lettuces using a bacteriocin produced by Lactococcus lactis wild strain. Food Control, 20 (8), pp. 756-763. https://doi.org/10.1016/j.foodcont.2008.09.020

Russo, P., de Chiara, M. L. V., Vernile, A., Amodio, M. L., Arena, M. P., Capozzi, V., Massa, S. y Spano, G. (2014). Fresh-cut pineapple as a new carrier of probiotic lactic acid bacteria. BioMed Research International, 2014, 309183. https://doi.org/10.1155/2014/309183 PMid:25093163 PMCid:PMC4100397

Russo, P., Peña, N., de Chiara, M. L. V., Amodio, M. L., Colelli, G. y Spano, G. (2015). Probiotic lactic acid bacteria for the production of multifunctional fresh-cut cantaloupe. Food Research International, 77, pp. 762-772. https://doi.org/10.1016/j.foodres.2015.08.033

Sánchez, G., Elizaquível, P. y Aznar, R. (2012). A single method for recovery and concentration of enteric viruses and bacteria from fresh-cut vegetables. International Journal of Food Microbi­ology, 152 (1-2), pp. 9-13. https://doi.org/10.1016/j.ijfoodmicro.2011.10.002 PMid:22036077

Scolari, G. y Vescovo, M. (2004). Microbial antagonism of Lactobacillus casei add­ed to fresh vegetables. Italian Journal of Food Science, 16 (4), pp. 465-475.

Sharma, M., Patel, J. R., Conway, W. S., Fer­guson, S. y Sulakvelidze, A. (2009). Effec­tiveness of bacteriophages in reducing Escherichia coli O157:H7 on fresh-cut cantaloupes and lettuce. Journal of Food Protection, 72 (7), pp. 1481-1485. https://doi.org/10.4315/0362-028X-72.7.1481 PMid:19681274

Siroli, L., Patrignani, F., Serrazanetti, D. I., Tabanelli, G., Montanari, C., Gardini, F. y Lanciotti, R. (2015). Lactic acid bac­teria and natural antimicrobials to improve the safety and shelf-life of minimally processed sliced apples and lamb's lettuce. Food Microbiology, 47, pp. 74-84. https://doi.org/10.1016/j.fm.2014.11.008 PMid:25583340

Siroli, L., Patrignani, F., Serrazanetti, D. I., Vannini, L., Salvetti, E., Torriani, S., Gar­dini, F. y Lanciotti, R. (2016). Use of a ni­sin-producing Lactococcus lactis strain, combined with natural antimicrobials, to improve the safety and shelf-life of minimally processed sliced apples. Food Microbiology, 54, pp. 11-19. https://doi.org/10.1016/j.fm.2015.11.004

Torriani, S., Scolari, G., Dellaglio, F. y Vescovo, M. (1999). Biocontrol of leu­conostocs in ready-to-use shredded carrots. Annali di Microbiologia ed En­zimologia, 49, pp. 23-31.

Trias, R., Bañeras, L., Badosa, E. y Montesi­nos, E. (2008). Bioprotection of Golden Delicious apples and Iceberg lettuce against foodborne bacterial pathogens by lactic acid bacteria. International Journal of Food Microbiology, 123 (1-2), pp. 50-60. https://doi.org/10.1016/j.ijfoodmicro.2007.11.065 PMid:18191266

Ukuku, D. O., Bari, M. L., Kawamoto, S. y Isshiki, K. (2005). Use of hydrogen per­oxide in combination with nisin, sodium lactate and citric acid for reducing trans­fer of bacterial pathogens from whole melon surfaces to fresh-cut pieces. In­ternational Journal of Food Microbiol­ogy, 104 (2), pp. 225-233. https://doi.org/10.1016/j.ijfoodmicro.2005.01.016 PMid:16043249

Ukuku, D. O. y Fett, W. F. (2002). Effective­ness of chlorine and nisin‐EDTA treat­ments of whole melons and fresh‐cut pieces for reducing native microflora and extending shelf‐life. Journal Food Safety, 22 (4), pp. 231-253. https://doi.org/10.1111/j.1745-4565.2002.tb00344.x

Ukuku, D. O. y Fett, W. F. (2004). Effect of nisin in combination with EDTA, sodium lactate, porassium sorbate for reduc­ing Salmonella on whole fresh-cut can­taloupe. Journal of Food Protection, 67 (10), pp. 2143-2150. https://doi.org/10.4315/0362-028X-67.10.2143 PMid:15508622

Vescovo, M., Torriani, S., Orsi, C., Macchiar­olo, F. y Scolari, G. (1996). Application of antimicrobial-producing lactic acid bac­teria to control pathogens in ready-to-use vegetables. Journal of Applied Bac­teriology, 81 (2), pp. 113-119. https://doi.org/10.1111/j.1365-2672.1996.tb04487.x PMid:8760320

Viñas, I., Abadias, M., Usall, J., Teixido, N. y Torres, R. (2017). UE Patente Nº EP2886665. Lleida, España. European Patent Office.

Viñas, I., Abadias, M., Usall, J., Teixidó, N. y Torres, R. (2014). EE. UU. Patente Nº 8735136. United States Patent and Trademark Office.

Vonasek, E. L., Choi, A. H., Sanchez, J. Jr. y Nitin, N. (2018). Incorporating phage therapy into WPI dip coatings for ap­plications on fresh whole and cut fruit and vegetable surfaces. Journal of Food Science, 83 (7), pp. 1871-1879. https://doi.org/10.1111/1750-3841.14188 PMid:29905930

Wang, X., Ouyang, Y., Liu, J., Zhu, M., Zhao, G., Bao, W. y Hu, F. B. (2014). Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of pro­spective cohort studies. BMJ: British Medical Journal, 349, g4490. https://doi.org/10.1136/bmj.g4490 PMid:25073782 PMCid:PMC4115152

Weiss, A., Hertel, C., Grothe, S., Ha, D. y Hammes, W. P. (2007). Characteriza­tion of the cultivable microbiota of sprouts and their potential for applica­tion as protective cultures. Systematic and Applied Microbiology, 30 (6), pp. 483-493. https://doi.org/10.1016/j.syapm.2007.03.006 PMid:17512686

Ye, J., Kostrzynska, M., Dunfield, K. y War­riner, K. (2010). Control of Salmonella on sprouting mung bean and alfalfa seeds by using a biocontrol prepara­tion based on antagonistic bacteria and lytic bacteriophages. Journal of Food Protection, 73 (1), pp. 9-17. https://doi.org/10.4315/0362-028X-73.1.9 PMid:20051198

Recursos en línea

La IV gama de frutas y hortalizas espera crecer un 10% hasta 2020. Valencia Fruits. [En línea]. Disponible en: http://valenciafruits.com/la-iv-gama-de-frutas-y-hortalizas-espera-crecer-un-10-hasta-2020/

Publicado

2020-03-30

Cómo citar

Alegre Vilas, I., Abadias Seró, M., Colás Medà, P., Collazo Cordero, C., & Viñas Almenar, I. (2020). Bioconservación frente a patógenos de transmisión alimentaria en frutas y hortalizas mínimamente procesadas. Arbor, 196(795), a543. https://doi.org/10.3989/arbor.2020.795n1007

Número

Sección

Artículos