Bacteriófagos y endolisinas en la industria alimentaria

Autores/as

DOI:

https://doi.org/10.3989/arbor.2020.795n1008

Palabras clave:

bacteriófago, endolisina, antimicrobiano, resistencia antimicrobiana, bacteria patógena, sostenibilidad

Resumen


La obtención de alimentos sanos y seguros requiere de técnicas de conservación inocuas para el consumidor y para el me­dio ambiente, entre las que se destaca la bioconservación. A su ca­tálogo de compuestos naturales o microorganismos, utilizados de forma habitual, la bioconservación ha incorporado recientemente los bacteriófagos (fagos) y las proteínas fágicas con actividad lítica (endolisinas). La utilización de fagos y endolisinas en el biocontrol ofrece importantes ventajas frente a otros sistemas de conserva­ción tradicionales. Entre dichas ventajas destacan su inocuidad, especificidad y versatilidad. Por otra parte, la acuciante necesidad de reducir el uso de antibióticos en la cadena alimentaria ha impul­sado la investigación basada en estos antimicrobianos con el fin de aplicarlos en producción primaria (terapia fágica). Sin embargo, y a pesar de la gran eficacia ya demostrada en múltiples sectores, la falta de legislación de la Unión Europea sobre el uso de bacteriófa­gos junto con la necesidad de ser aceptados por los consumidores, son factores que están afectando negativamente a su implantación como bioconservantes. En este contexto, este artículo recoge los últimos resultados relacionados con este tipo de antimicrobianos en la industria agro-alimentaria, y resume los puntos clave para entender las posibilidades reales de su aplicación ante los nuevos requisitos asociados con una producción sostenible tanto desde una perspectiva económica como ambiental

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ackermann, H. W. (2007). 5500 Phages exa­mined in the electron microscope. Archi­ves of Virology, 152, pp. 227-243. https://doi.org/10.1007/s00705-006-0849-1 PMid:17051420

Bigwood, T., Hudson, J. A., Billington, C., Carey-Smith, G. V. y Heinemann, J. A. (2008). Phage inactivation of food­borne pathogens on cooked and raw meat. Food Microbiolology, 25, pp. 400-406. https://doi.org/10.1016/j.fm.2007.11.003 PMid:18206783

Bore, E., Hebraud, M., Chafsey, I., Cham­bon, C., Skjaeret, C., Moen, B. y Langs­rud, S. (2007). Adapted tolerance to benzalkonium chloride in Escherichia coli K-12 studied by transcriptome and proteome analyses. Microbiology 153, pp. 935-946. https://doi.org/10.1099/mic.0.29288-0 PMid:17379704

Briers, Y. y Lavigne, R. (2015). Breaking barriers: expansion of the use of en­dolysins as novel antibacterials against Gram-negative bacteria. Future Micro­biology, 10, pp. 377-390. https://doi.org/10.2217/fmb.15.8 PMid:25812461

Bruttin, A. y Brussow, H. (2005). Human vo­lunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrobial Agents and Chemothe­rapy, 49, pp. 2874-2878. https://doi.org/10.1128/AAC.49.7.2874-2878.2005 PMid:15980363 PMCid:PMC1168693

Brüssow, H. y Kutter, E. (2005). Phage eco­logy. En: Kutter, E. y Sulakvelidze, A. (eds.). Bacteriophages: Biology and Application. Boca Raton, Florida: CRC Press, pp. 129-164. https://doi.org/10.1201/9780203491751.ch6

Carvalho, C., Costa, A. R., Silva, F. y Oliveira, A. (2017). Bacteriophages and their de­rivatives for the treatment and control of food-producing animal infections. Critical Reviews in Microbiology, 43, pp. 583-601. https://doi.org/10.1080/1040841X.2016.1271309 PMid:28071145

Catalao, M. J., Gil, F., Moniz-Pereira, J., Sao- Jose, C. y Pimentel, M. (2013). Diversity in bacterial lysis systems: bacteriopha­ges show the way. FEMS Microbiology Reviews, 37, pp. 554-571. https://doi.org/10.1111/1574-6976.12006 PMid:23043507

Donovan, D. M., Lardeo, M. y Foster- Frey, J. (2006). Lysis of staphylococcal mastitis pathogens by bacteriophage phi11 endolysin. FEMS Microbiology Letters, 265, pp. 133-139. https://doi.org/10.1111/j.1574-6968.2006.00483.x PMid:17054440

European Food Safety Authority and Euro­pean Centre for Disease Prevention and Contro (EFSA and ECDC) (2017). The European Union summary report on trends and sources of zoonoses, zoono­tic agents and food-borne outbreaks in 2016. EFSA Journal, 15 (12), e05077. https://doi.org/10.2903/j.efsa.2017.5077 PMid:32625371

Endersen, L., O'Mahony, J., Hill, C., Ross, R. P., McAuliffe, O. y Coffey, A. (2014). Pha­ge therapy in the food industry. Annual Review of Food Science and Technology, 5, pp. 327-349. https://doi.org/10.1146/annurev-food-030713-092415 PMid:24422588

Fan, J., Zeng, Z., Mai, K., Yang, Y., Feng, J., Bai, Y., Sun, B., Xie, Q., Tong, Y. y Ma, J. (2016). Preliminary treatment of bovine mastitis caused by Staphylococcus aureus, with trx-SA1, recombinant endolysin of S. au­reus bacteriophage IME-SA1. Veterinary Microbiology, 191, pp. 65-71. https://doi.org/10.1016/j.vetmic.2016.06.001 PMid:27374909

Fischetti, V. A. (2008). Bacteriophage ly­sins as effective antibacterials. Cu­rrent Opinion in Microbiology, 11, pp. 393-400. https://doi.org/10.1016/j.mib.2008.09.012 PMid:18824123 PMCid:PMC2597892

Gaeng, S., Scherer, S., Neve, H. y Loessner, M. J. (2000). Gene cloning and expres­sion and secretion of Listeria mono­cytogenes bacteriophage-lytic enzy­mes in Lactococcus lactis. Applied and Environmental Microbiology, 66, pp. 2951-2958. https://doi.org/10.1128/AEM.66.7.2951-2958.2000 PMid:10877791 PMCid:PMC92096

Gómez-Torres, N., Ávila, M., Narbad, A., Mayer, M. J. y Garde, S. (2019). Use of fluorescent CTP1L endolysin cell wall-binding domain to study the evolution of Clostridium tyrobutyricum during cheese ripening. Food Microbiology, 78, pp. 11-17 https://doi.org/10.1016/j.fm.2018.09.018 PMid:30497591

Gómez-Torres, N., Dunne, M., Garde, S., Mei­jers, R., Narbad, A., Ávila, M. y Mayer, M. J. (2018). Development of a specific fluorescent phage endolysin for in situ detection of Clostridium species associa­ted with cheese spoilage. Microbial Bio­technology, 11, pp. 332-345. https://doi.org/10.1111/1751-7915.12883 PMid:29160025 PMCid:PMC5812242

Gutiérrez, D., Rodríguez-Rubio, L., Martí­nez, B., Rodríguez, A. y García, P. (2016). Bacteriophages as weapons against bac­terial biofilms in the food industry. Fron­tiers in Microbiology, 7, 825. https://doi.org/10.3389/fmicb.2016.00825

Hagens, S. y Loessner, M. J. (2007). Appli­cation of bacteriophages for detection and control of foodborne pathogens. Applied Microbiology and Biotech­nology, 76, pp. 513-519. https://doi.org/10.1007/s00253-007-1031-8 PMid:17554535

Ibarra-Sánchez, L. A., Van Tassell, M. L. y Miller, M. J. (2018). Antimicrobial be­havior of phage endolysin PlyP100 and its synergy with nisin to control Listeria monocytogenes in Queso Fresco. Food Microbiology, 72, pp. 128-134. https://doi.org/10.1016/j.fm.2017.11.013 PMid:29407389

Kretzer, J. W., Schmelcher, M. y Loessner, M. J. (2018). Ultrasensitive and fast diagnostics of viable Listeria cells by CBD magnetic separation combined with A511: luxAB detection. Viruses, 10 (11), 626. https://doi.org/10.3390/v10110626 PMid:30428537 PMCid:PMC6266503

Kutter, E., De Vos, D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S. y Abedon, S. T. (2010). Phage therapy in clinical prac­tice: treatment of human infections. Current Pharmaceutical Biotechnology, 11, pp. 69-86. https://doi.org/10.2174/138920110790725401 PMid:20214609

Kutter, E. M., Kuhl, S. J. y Abedon, S. T. (2015). Re-establishing a place for pha­ge therapy in western medicine. Future Microbiology, 10, pp. 685-688. https://doi.org/10.2217/fmb.15.28 PMid:26000644

Loessner, M. J. (2005). Bacteriophage en­dolysins--current state of research and applications. Current Opinion in Micro biology, 8, pp. 480-487. https://doi.org/10.1016/j.mib.2005.06.002 PMid:15979390

López, R., García, E., García, P. y García, J. L. (1997). The pneumococcal cell wall degrading enzymes: a modular design to create new lysins? Microbial Drug Resistance, 3, pp. 199-211. https://doi.org/10.1089/mdr.1997.3.199 PMid:9185148

Manrique, P., Dills, M. y Young, M. J. (2017). The human gut phage com­munity and its implications for health and disease. Viruses, 9 (6), 141. https://doi.org/10.3390/v9060141 PMid:28594392 PMCid:PMC5490818

Misiou, O., van Nassau, T. J., Lenz, C. A. y Vogel, R. F. (2018). The preservation of Listeria-critical foods by a combina­tion of endolysin and high hydrosta­tic pressure. International Journal of Food Microbiology, 266, pp. 355-362. https://doi.org/10.1016/j.ijfoodmicro.2017.10.004 PMid:29074196

Moye, Z. D., Woolston, J. y Sulakvelid­ze, A. (2018). Bacteriophage applica­tions for food production and proces­sing. Viruses, 10 (4), 205. https://doi.org/10.3390/v10040205 PMid:29671810 PMCid:PMC5923499

Obeso, J. M., Martínez, B., Rodríguez, A. y García, P. (2008). Lytic activity of the re­combinant staphylococcal bacteriopha­ge PhiH5 endolysin active against Sta­phylococcus aureus in milk. Internatio­nal Journal of Food Microbiology, 128, pp. 212-218. https://doi.org/10.1016/j.ijfoodmicro.2008.08.010 PMid:18809219

Richter, L., Janczuk-Richter, M., Niedzio­lka-Jonsson, J., Paczesny, J. y Holyst, R. (2018). Recent advances in bacte­riophage-based methods for bacteria detection. Drug Discovery Today, 23, pp. 448-455. ­ https://doi.org/10.1016/j.drudis.2017.11.007 PMid:29158194

Rodríguez-Rubio, L., Gutiérrez, D., Martí­nez, B., Rodríguez, A. y García, P. (2012). Lytic activity of LysH5 endolysin secre­ted by Lactococcus lactis using the se­cretion signal sequence of bacteriocin Lcn972. Applied and Environmental Mi­crobiology, 78, pp. 3469-3472. https://doi.org/10.1128/AEM.00018-12 PMid:22344638 PMCid:PMC3346474

Rodríguez-Rubio, L., Martínez, B., Donovan, D. M., García, P. y Rodríguez, A. (2013). Potential of the virion-associated pepti­doglycan hydrolase HydH5 and its deri­vative fusion proteins in milk biopreser­vation. PLoS One, 8, e54828. https://doi.org/10.1371/journal.pone.0054828 PMid:23359813 PMCid:PMC3554637

Rodríguez-Rubio, L., Martínez, B., Rodrí­guez, A., Donovan, D. M., Gotz, F. y Gar­cía, P. (2013). The phage lytic proteins from the Staphylococcus aureus bac­teriophage vB_SauS-phiIPLA88 display multiple active catalytic domains and do not trigger staphylococcal resistan­ce. PLoS One, 8, e64671. https://doi.org/10.1371/journal.pone.0064671 PMid:23724076 PMCid:PMC3665550

Sao-Jose, C., Parreira, R., Vieira, G. y San­tos, M. A. (2000). The N-terminal region of the Oenococcus oeni bacteriophage fOg44 lysin behaves as a bona fide signal peptide in Escherichia coli and as a cis-in­hibitory element, preventing lytic activi­ty on oenococcal cells. Journal of Bacte­riology, 182, pp. 5823-5831. https://doi.org/10.1128/JB.182.20.5823-5831.2000 PMid:11004183 PMCid:PMC94706

Sarker, S. A., McCallin, S., Barretto, C., Ber­ger, B., Pittet, A. C., Sultana, S., Krause, L., Huq, S., Bibiloni, R., Bruttin, A., Reute­ler, G. y Brussow, H. (2012). Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh. Vi­rology, 434, pp. 222-232. https://doi.org/10.1016/j.virol.2012.09.002 PMid:23102968

Schmelcher, M., Donovan, D. M. y Loessner, M. J. (2012). Bacteriophage endolysins as novel antimicrobials. Future Micro­biology, 7, pp. 1147-1171. https://doi.org/10.2217/fmb.12.97 PMid:23030422 PMCid:PMC3563964

Scholte, C. M., Nelson, D. C., Garcia, M., Linden, S. B., Elsasser, T. H., Kahl, S., Qu, Y. y Moyes, K. M. (2018). Short commu­nication: Recombinant bacteriophage endolysin PlyC is nontoxic and does not alter blood neutrophil oxidative response in lactating dairy cows. Journal of Dairy Science, 101, pp. 6419-6423. https://doi.org/10.3168/jds.2017-13908 PMid:29729914

Schuch, R., Nelson, D. y Fischetti, V. A. (2002). A bacteriolytic agent that de­tects and kills Bacillus anthracis. Na­ture, 418, pp. 884-889. https://doi.org/10.1038/nature01026 PMid:12192412

Sulakvelidze, A. (2013). Using lytic bacte­riophages to eliminate or significantly reduce contamination of food by foo­dborne bacterial pathogens. Journal of the Science of Food and Agricul­ture, 93, pp. 3137-3146. https://doi.org/10.1002/jsfa.6222 PMid:23670852

Sulakvelidze, A. y Kutter, E. (2005). Bacte­riophage therapy in humans. En: Kutter, E. y Sulakvelidze, A. (eds.). Bacteriopha­ges: biology and application. Boca Ra­ton, Florida: CRC Press, pp. 381-436. https://doi.org/10.1201/9780203491751.ch14 PMid:14715765 PMCid:PMC321703

Recursos en línea

Centers for Disease Control and Prevention (CDC). Foodborne Diseases Active Survei­llance Network (FoodNet): FoodNet 2015 Annual Foodborne Illness Surveillance Report. [En línea]. Disponible en https://www.cdc.gov/foodnet/reports/annual-reports-2015.html

Publicado

2020-03-30

Cómo citar

Gutiérrez Fernández, D., Fernández Llamas, L., Rodríguez González, A., & García Suárez, P. (2020). Bacteriófagos y endolisinas en la industria alimentaria. Arbor, 196(795), a544. https://doi.org/10.3989/arbor.2020.795n1008

Número

Sección

Artículos