Proteómica y biología de sistemas para el estudio de la alergia alimentaria

Autores/as

DOI:

https://doi.org/10.3989/arbor.2020.795n1010

Palabras clave:

roteómica, biología de sistemas, alimentos, alergia

Resumen


La alergia alimentaria es el cuarto principal proble­ma de salud pública según datos de la Organización Mundial de la Salud (OMS). Afecta a un total de 6-8% de niños y a 2-4% de adultos. Debido a la actual gran prevalencia de la alergia ali­mentaria, se hace necesario el desarrollo de nuevos métodos de control, tratamiento y estudio. En esta revisión se presentan los enfoques proteómicos y de biología de sistemas más recien­tes para el estudio de la alergia alimentaria. En este sentido, se resumen con detalle las dos principales estrategias proteómicas (proteómica de descubrimiento y proteómica dirigida). También se describen los innovadores enfoques de biología de sistemas basados en datos proteómicos para el estudio de los mecanis­mos de la alergia alimentaria. Finalmente se presentan nuevas perspectivas y futuras direcciones.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahsan, N., Rao, R. S. P., Gruppuso, P. A., Ramratnam, B. y Salomon, A. R. (2016). Targeted proteomics: current status and future perspectives for quantifica­tion of food allergens. Journal of Pro­teomics, 143, pp. 15- 23.

Álvarez, G., Montero, L., Llorens, L., Cas­tro-Puyana, M. y Cifuentes, A. (2018). Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electro­phoresis, 39, pp. 136-159.

Angelis, E. de, Pilolli, R. y Monaci, L. (2017). Coupling SPE on-line pre-enrichment with HPLC and MS/MS for the sensi­tive detection of multiple allergens in wine. Food Control, 73, pp. 814- 820.

Ansari, P., Stoppacher, N., Rudolf, J., Schu­hmacher, R. y Baumgartner, S. (2011). Selection of possible marker peptides for the detection of major ruminant milk proteins in food by liquid chroma­tography-tandem mass spectrometry. Analytical and Bioanalytical Chemis­try, 399, pp. 1105-1115.

Careri, M., Elviri, L., Lagos, J. B., Mangia, A., Speroni, F. y Terenghi, M. (2008). Selec­tive and rapid immunomagnetic bead-based sample treatment for the liquid chromatography-electrospray ion-trap mass spectrometry detection of Ara h3/4 peanut protein in foods. Journal of Chromatogr A, 1206, pp. 89-94.

Careri, M., Elviri, L., Maffini, M., Mangia, A., Mucchino, C. y Terenghi, M. (2008). Determination of peanut allergens in cereal-chocolate-based snacks: metal-tag inductively coupled plasma mass spectrometry immunoassay versus liquid chromatography/ electrospray ionization tandem mass spectrometry. Rapid Communication in Mass Spec­trometry, 22, pp. 807-811.

Carrera, M., Cañas, B. y Gallardo, J. M. (2012). Rapid direct detection of the major fish allergen, parvalbumin, by selected MS/MS ion monitoring mass spectrometry. Journal of Proteo­mics, 75, pp. 3211- 3220.

Carrera, M., Cañas, B. y López-Ferrer, D. (2017). Fast global phosphoproteo­me profiling of Jurkat T cells by HIFU-TiO2- SCX-LC-MS/MS. Analytical Che­mistry, 89, pp. 8853-8862.

Carrera, M., Cañas, B., Lopez-Ferrer, D., Piñeiro, C., Vázquez, J. y Gallardo, J. M. (2011). Fast monitoring of species-specific peptide biomarkers using high-intensity-focused-ultrasound-assisted tryptic digestion and selected MS/ MS ion monitoring. Analytical Chemis­try, 83, pp. 5688-5695.

Carrera, M., Cañas, B., Vázquez, J. y Gallar­do, J. M. (2010). Extensive de novo se­quencing of new parvalbumin isoforms using a novel combination of bottom-up proteomics, accurate molecular mass measurement by FTICR-MS, and selec­ted MS/MS ion monitoring. Journal of Proteome Research, 9, pp. 4393-4406.

Carrera, M., Gallardo, J. M., Pascual, S., Gon­zález, A. F. y Medina, I. (2016). Protein biomarker Discovery and fast monitoring for the identification and detection of Anisakids by parallel reaction monito­ring (PRM) mass spectrometry. Journal of Proteomics, 142, pp. 130-137.

Carrera, M., Weisbrod, C., Lopez-Ferrer, D., Huguet, R., Gallardo, J. M., Schwartz, J. y Huhmer, A. (2015). Top-down, high-throughput of thermostable allergens using complementary MS/MS fragmen­tation strategies. Thermo Fisher Scienti­fic. PN64488-EN 0615S.

Cereda, A., Kravchuk, A. V., D’Amato, A., Bachi, A. y Righetti, P. G. (2010). Pro­teomics of wine additives: mining for the invisible via combinatorial pepti­de ligand libraries. Journal of Proteo­mics, 73, pp. 1732-1739.

Cifuentes, A. (2009). Food analysis and foodomics. Journal of Chromatography A, 1216, pp. 7109-7110.

Cryar, A., Pritchard, C., Burkitt, W., Walker, M., O’Connor, G. y Quaglia, M. (2012). A mass spectrometry-based reference method for the analysis of lysozyme in wine and the production of certified re­ference materials. Journal of the Asso­ciation of Public Analysis, 40, pp. 77-80.

D’Amato, A., Kravchuk, A. V., Bachi, A. y Righetti, P. G. (2010). Noah’s nectar: the proteome content of a glass of red wine. Journal of Proteomics, 73, pp. 2370-2377.

Elsayed, S. y Bennich, H. (1975). The pri­mary structure of allergen M from cod. Scandinavian Journal of Im­munology, 4, pp. 203-208.

Grishina, G., Bardina, L. y Grishin, A. (2017). 2D-electrophoresis and immunoblot­ting in food allergy. Methods in Molecu­lar Biology, 1592, pp. 59-69.

Hebling, C. M., McFarland, M. A., Callahan, J. H. y Ross, M. M. (2013). Global pro­teomic screening of protein allergens and advanced glycation endproducts in thermally processed peanuts. Journal of Agricultural and Food Chemistry, 61, pp. 5638-5648.

Heick, J., Fischer, M. y Pöpping, B. (2011). First screening method for the simulta­neous detection of seven allergens by li­quid chromatography mass spectrome­try. Journal of Chromatography A, 1218, pp. 938-943.

Herrero, M., Simó, C., García-Cañas, V., Ibánez, E. y Cifuentes, A. (2012). Foo­domics: MS-based strategies in mo­dern food science and nutrition. Mass Spectrometry Reviews, 31, pp. 49-69.

Hong, C., Jiang, H., Lü, E., Wu, Y., Guo, L., Xie, Y., Wang, C. y Yang, Y. (2012). Iden­tification of milk component in ancient food residue by proteomics. PLOS One, 7, e37053.

Johnson, P. E., Sayers, R. L., Gethings, L. A., Balasundaram, A., Marsh, J. T., Langrid­ge, J. I., Clare Mills, E. N. (2016). Quan­titative proteomic profiling of peanut allergens in food ingredients used for oral food challenges. Analytical Che­mistry, 88, pp. 5689-5695.

Jorge, I., Casas, E. M., Villar, M., Ortega- Pérez, I., López-Ferrer, D., Martínez- Ruíz, A. […] y Vázquez, J. (2007). High-sensitivity analysis of specific peptides in complex samples by selected MS/ MS ion monitoring and linear ion trap mass spectrometry: application to bio­logical studies. Journal of Mass Spectro­metry, 42, pp. 1391-1403.

Korte, R. y Brockmeyer, J. (2016). MRM3- based LC-MS multi-method for the de­tection and quantification of nut aller­gens. Analytical and Bioanalytical Che­mistry, 408, pp. 7845-7855.

Lee, J. Y. y Kim, C. J. (2010). Determination of allergenic egg proteins in food by protein-, mass spectrometry-, and DNA-based methods. Journal of AOAC Inter­national, 93, pp. 462-477.

Lorente, F., Laffond, E., Dávila, I. y Moreno, E. (2001). Mecanismos de tolerancia in­munológica. Prevención primaria de la alergia a alimentos. Alergología e Inmu­nología Clínica,16, pp. 58-75.

Lutter, P., Parisod, V. y Weymuth, H. (2011). Development and validation of a method for the quantification of milk proteins in food products ba­sed on liquid chromatography with mass spectrometric detection. Jour­nal of AOAC International, 94, pp. 1043-1059.

Maggi, E. (1998). The TH1/TH2 paradigm in allergy. Immunotechnology, 3, pp. 233- 244.

Martínez-Esteso, M. J., Nørgaard, J., Bro­hée, M., Haraszi, R., Maquet, A. y O’Connor, G. (2016). Defining the wheat gluten peptide fingerprint via a discovery and targeted proteomics approach. Journal of Proteomics, 147, pp. 156-168.

Marzban, G., Herndl, A., Maghuly, F., Ka­tinger, H. y Laimer, M. (2008). Mapping of fruit allergens by 2D electrophoresis and immunodetection. Expert Reviews in Proteomics, 5, pp. 61-75.

Mattarozzi, M., Bignardi, C., Elviri, L. y Ca­reri, M. (2012). Rapid shotgun proteo­mic liquid chromatography-electrospray ionization-tandem mass spectrometry-based method for the lupin (Lupinus al­bus L.) multi-allergen determination in foods. Journal of Agricultural and Food Chemistry, 60, pp. 5841-5846.

Monaci, L., Angelis, E. de, Bavaro, S. L. y Pilolli, R. (2015). High-resolution OrbitrapTM-based mass spectrometry for rapid detection of peanuts in nuts. Food Additive & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment, 32, pp. 1607-1616.

Monaci, L. y van Hengel, A. J. (2008). De­velopment of a method for the quantifi­cation of whey allergen traces in mixed-fruit juices based on LC with MS detec­tion. Journal of Chromatography, 1192, pp. 113-120.

Monaci, L., Losito, I., Angelis, E. de, Pilolli, R. y Visconti, A. (2013). Multi-allergen quantification of fining-related egg and milk proteins in white wines by high-resolution mass spectrometry. Rapid Communication in Mass Spectrome­try, 27, pp. 2009-2018.

Monaci, L., Losito, I., Palmisano, F. y Viscon­ti, A. (2010). Identification of allergenic milk proteins markers in fined White wi­nes by capillary liquid chromatography-electrospray ionization-tandem mass spectrometry. Journal of Chromatogra­phy A, 1217, pp. 4300- 4305.

Monaci, L., Losito, I., Palmisano, F. y Viscon­ti, A. (2011). Reliable detection of milk allergens in food using a high-resolu­tion, stand-alone mass spectrometer. Journal of AOAC International, 94, pp. 1034-1042.

Neethirajan, S., Weng, X., Tah, A., Cordero, O. y Ragavan, K. V. (2018). Nano-biosen­sor platforms for detecting food aller­gens – New trends. Sensing and Bio- Sensing Research, 18, pp. 13-30.

Ortea, I., Cañas, B. y Gallardo, J. M. (2009). Mass spectrometry characterization of species-specific peptides from arginine kinase for the identification of commer­cially relevant shrimp species. Journal of Proteome Research, 8, pp. 5356-5362.

Ortea, I., Cañas, B. y Gallardo, J. M. (2011). Selected tandem mass spectrometry ion monitoring for the fast identification of seafood species. Journal of Chromato­graphy A, 1218, pp. 4445-4451.

Pedreschi, R., Nørgaard, J. y Maquet, A. (2012). Current challenges in detecting food allergens by shotgun and targeted proteomic approaches: a case study on traces of peanut allergens in baked coo­kies. Nutrients, 4, pp. 132-150.

Pilolli, R., Angelis, E. de y Monaci, L. (2017). Streamlining the analytical workflow for multiplex MS/MS allergen detec­tion in processed foods. Food Chemis­try, 221, pp. 1747-1753.

Sampson, H. A. (2003). Anaphylaxis and emergency treatment. Pediatrics, 111, pp. 1601-1608.

Sayers, R. L., Gethings, L. A., Lee, V., Bala­sundaram, A., Johnson, P. E., Marsh, J. A., Wallace, A., Brown, H., Rogers, A., Langridge, J. I., Mills, E. N. C. (2018). Microfluidic separation coupled to mass spectrometry for quantification of pea­nut allergens in a complex food matrix. Journal of Proteome Research, 17, pp. 647-655.

Sealey-Voyksner, J. A., Khosla, C., Voyksner, R. D. y Jorgenson, J. W. (2010). Novel aspects of quantitation of immunogenic wheat gluten peptides by liquid chro­matography-mass spectrometry/mass spectrometry. Journal of Chromatogra­phy A, 1217, pp. 4167-4183.

Sicherer, S. H. y Sampson, H. A. (2014). Food allergy: epidemiology, pathogene­sis, diagnosis and treatment. Journal of Allergy and Clinical Immunology, 133, pp. 291-307.

Sun, L., Lin, H., Li, Z., Sun, W., Wang, J., Wu, H., Ge, M., Ahmed, I. y Pavase, T. R. (2019). Development of a method for the quantification of fish major allergen parvalbumin in food matrix via liquid chromatography-tandem mass spectrometry with multiple reaction monitoring. Food Chemistry 276, pp. 358-365.

Weber, D., Chantal, C. y Godefroy, S. B. (2009). Emerging analytical methods to determine gluten markers in processed food-method development in support of standard setting. Analytical and Bioa­nalytical Chemistry, 395, pp. 111-117.

Publicado

2020-03-30

Cómo citar

Carrera, M. (2020). Proteómica y biología de sistemas para el estudio de la alergia alimentaria. Arbor, 196(795), a546. https://doi.org/10.3989/arbor.2020.795n1010

Número

Sección

Artículos