Arbor, Vol 196, No 795 (2020)

Virus entéricos humanos en alimentos: detección y métodos de inactivación


https://doi.org/10.3989/arbor.2020.795n1003

Walter Randazzo
Universidad de Valencia, España
orcid https://orcid.org/0000-0002-7433-149X

Irene Falcó
Instituto de Agroquímica y Tecnología de Alimentos Consejo Superior de Investigaciones Científicas, España
orcid https://orcid.org/0000-0002-4036-3274

Alba Pérez-Cataluña
Instituto de Agroquímica y Tecnología de Alimentos. Consejo Superior de Investigaciones Científicas, España
orcid https://orcid.org/0000-0002-4784-8346

Gloria Sánchez
Instituto de Agroquímica y Tecnología de Alimentos. Consejo Superior de Investigaciones Científicas, España
orcid https://orcid.org/0000-0001-7022-661X

Resumen


Los principales patógenos víricos que podemos ad­quirir ingiriendo alimentos contaminados son los norovirus, el virus de la hepatitis A y el virus de la hepatitis E que se propagan principalmente a través de la vía fecal oral. En los últimos años, la incidencia de brotes de transmisión alimentaria causados por estos patógenos ha experimentado un aumento considerable, en parte debido al comercio globalizado y a los cambios en los hábitos de consumo. Las matrices alimentarias que mayor riesgo representan para el consumidor son los moluscos bivalvos, ve­getales de IV gama, frutas tipo baya y platos listos para comer. Actualmente las técnicas moleculares son las más habituales para la detección de estos patógenos en alimentos, aunque toda­vía existen dudas acerca del significado de la presencia de estos genomas víricos en términos de seguridad alimentaria. La infec­tividad de estos patógenos en alimentos viene también determi­nada por su elevada persistencia ambiental y por su resistencia a los tratamientos aplicados para la conservación de los alimentos.

Palabras clave


virus entéricos; seguridad alimentaria; inactivación vírica; compuestos virucidas; envases virucidas; métodos moleculares; metagenómica

Texto completo:


HTML PDF XML

Referencias


Aarestrup, F. M., Brown, E. W., Detter, C., Gerner-Smidt, P., Gilmour, M. W., Harmsen, D. […] y Schlundt, J. (2012). Integrating genome-based informatics to modernize global disease moni­toring, information sharing, and res­ponse. Emerging Infectious Diseases, 18 (11), e1.

Amankwaah, C. (2013). Incorporation of selected plant extracts into edible chito­san films and the effect on the antiviral, antibacterial and mechanical properties of the material. [Tesis doctoral inédi­ta]. The Ohio State University. Disponi­ble en http://rave.ohiolink.edu/etdc/ view?acc_num=osu1366220367

Aw, T. G., Wengert, S. y Rose, J. B. (2016). Metagenomic analysis of viruses as­sociated with field-grown and retail lettuce identifies human and animal vi­ruses. International Journal of Food Mi­crobiology, 223, pp. 50-56.

Bartsch, C., Höper, D., Mäde, D. y Johne, R. (2018). Analysis of frozen strawberries involved in a large norovirus gastroen­teritis outbreak using next generation sequencing and digital PCR. Food Mi­crobiology, 76, pp. 390-395.

Bosch, A., Sánchez, G., Abbaszadegan, M., Carducci, A., Guix, S., Le Guyader, F. S. […] y Sellwood, J. (2011). Analytical Methods for Virus Detection in Water and Food. Food Analytical Methods, 4 (1), pp. 4-12.

Breitbart, M., Salamon, P., Andresen, B., Mahaffy, J. M., Segall, A. M., Mead, D., Azam, F. y Rohwer, F. (2002). Ge­nomic analysis of uncultured marine viral communities. Proceedings of the National Academy of Sciences of the United States of America, 99 (22), pp. 14250-14255.

Briese, T., Kapoor, A., Mishra, N., Jain, K., Kumar, A., Jabado, O. J. y Ian Lipkina, W. (2015). Virome capture sequencing enables sen­sitive viral diagnosis and comprehensive virome analysis. MBio, 6 (5), e01491-15.

Conceição-Neto, N., Zeller, M., Lefrère, H., De Bruyn, P., Beller, L., Deboutte, W. [...] Matthijnssens, J. (2015). Modular approach to customise sample prepara­tion procedures for viral metagenomics: A reproducible protocol for virome analysis. Scientific Reports, 5 (1), 16532.

Costantini, V., Morantz, E. K., Browne, H., Ettayebi, K., Zeng, X. L., Atmar, R. L., Estes, M. K. y Vinjé, J. (2018). Human norovirus replication in human intesti­nal enteroids as model to evaluate virus inactivation. Emerging Infectious Disea­ses, 24 (8), pp. 1453-1464.

Cotten, M., Oude Munnink, B., Canuti, M., Deijs, M., Watson, S. J., Kellam, P. y van der Hoek, L. (2014). Full genome virus detection in fecal samples using sensi­tive nucleic acid preparation, deep se­quencing, and a novel iterative sequen­ce classification algorithm. PLoS ONE, 9 (4), e93269.

Coudray-Meunier, C., Fraisse, A., Martin- Latil, S., Guillier, L. y Perelle, S. (2013). Discrimination of infectious hepatitis A virus and rotavirus by combining dyes and surfactants with RT-qPCR. BMC Microbiology, 13 (1), 216.

DiCaprio, E., Ma, Y., Purgianto, A., Hughes, J. y Li, J. (2012). Internalization and dis­semination of human norovirus and animal caliciviruses in hydroponically grown romaine lettuce. Applied and En­vironmental Microbiology, 78 (17), pp. 6143-6152.

European Food Safety Authority and Eu­ropean Centre for Disease Prevention and Control (EFSA and ECDC) (2018). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne out­breaks in 2017. EFSA Journal, 16 (12), e05500.

European Food Safety Authority (EFSA) (2019). Scientific report on analysis of the European baseline survey of noro­virus in oysters. EFSA Journal, 17 (7), e05762.

Fabra, M. J., Castro-Mayorga, J. L., Randaz­zo, W., Lagarón, J. M., López-Rubio, A., Aznar, R. y Sánchez, G. (2016). Effica­cy of Cinnamaldehyde Against Enteric Viruses and Its Activity After Incorpo­ration Into Biodegradable Multilayer Systems of Interest in Food Packaging. Food and Environmental Virology, 8 (2), pp. 125-132.

Falcó, I., Flores-Meraz, P. L., Randazzo, W., Sánchez, G., López-Rubio, A. y Fabra, M. J. (2019). Antiviral activity of alginate-oleic acid based coatings incorporating green tea extract on strawberries and raspberries. Food Hydrocolloids, 87, pp. 611-618.

Falcó, I., Randazzo, W., Sánchez, G., López- Rubio, A. y Fabra, M. J. (2019). On the use of carrageenan matrices for the development of antiviral ediblecoa­tings of interest in berries. Food Hy­drocolloids, 92, pp. 74-85.

Falcó, I., Randazzo, W., Rodríguez-Díaz, J., Gozalbo-Rovira, R., Luque, D., Aznar, R. y Sánchez, G. (2019). Antiviral activity of aged green tea extract in model food systems and under gastric conditions. International Journal of Food Micro­biology, 292, pp. 101-106.

Falcó, I., Randazzo, W., Gómez-Mascara­que, L. G., Aznar, R., López-Rubio, A. y Sánchez, G. (2018). Fostering the an­tiviral activity of green tea extract for sanitizing purposes through controlled storage conditions. Food Control, 84, pp. 485-492.

Fernandez-Cassi, X., Timoneda, N., Gonza­les-Gustavson, E., Abril, J. F., Bofill-Mas, S. y Girones, R. (2017). A metagenomic assessment of viral contamination on fresh parsley plants irrigated with fe­cally tainted river water. International Journal of Food Microbiology, 257, pp. 80-90.

Fraisse, A., Coudray-Meunier, C., Martin- Latil, S., Hennechart-Collette, C., Delan­noy, S., Fach, P. y Perelle, S. (2017). Digi­tal RT-PCR method for hepatitis A virus and norovirus quantification in soft be­rries. International Journal of Food Mi­crobiology, 243, pp. 36-45.

Fraisse, A., Niveau, F., Hennechart-Collette, C., Coudray-Meunier, C., Martin-Latil, S. y Perelle, S. (2018). Discrimination of infectious and heat-treated norovirus by combining platinum compounds and real-time RT-PCR. International Journal of Food Microbiology, 269, pp. 64-74.

Fuster, N., Pintó, R. M., Fuentes, C., Begui­ristain, N., Bosch, A. y Guix, S. (2016). Propidium monoazide RTqPCR assays for the assessment of hepatitis A inacti­vation and for a better estimation of the health risk of contaminated waters. Wa­ter Research, 101, pp. 226-232.

Joshi, S. S., Su, X. y D’Souza, D. H. (2015). An­tiviral effects of grape seed extract aga­inst feline calicivirus, murine norovirus, and hepatitis A virus in model food sys­tems and under gastric conditions. Food Microbiology, 52, pp. 1-10.

Kupferschmidt, K. (2016). Europe’s new hepatitis problem. Science, 353 (6302), pp. 862-863.

Li, D., Baert, L., Zhang, D., Xia, M., Zhong, W., Van Coillie, E., Jiang, X. y Uytten­daele, M. (2012). Effect of grape seed extract on human norovirus GII.4 and murine norovirus 1 in viral suspensions, on stainless steel discs, and in lettuce wash water. Applied and Environmental Microbiology, 78 (21), pp. 7572-7578.

López-Gálvez, F., Randazzo, W., Vásquez, A., Sánchez, G., Tombini Decol, L., Aznar, R., Gil, M. I. y Allende, A. (2018). Irrigating Lettuce with Wastewater Effluent: Does Disinfection with Chlorine Dioxide Inac­tivate Viruses? Journal of Environmental Quality, 47 (5), pp. 1139-1145.

Lowther, J. A., Bosch, A., Butot, S., Ollivier, J., Mäde, D., Rutjes, S. A., Hardouin, G., Lombard, B., in’t Veld, P. y Leclercq, A. (2019). Validation of ISO method 15216 part 1 – Quantification of hepatitis A virus and norovirus in food matrices. International Journal of Food Micro­biology, 288, pp. 82-90.

Moreno, L., Aznar, R. y Sánchez, G. (2015). Application of viability PCR to discrimi­nate the infectivity of hepatitis A virus in food samples. International Journal of Food Microbiology, 201, pp. 1-6.

Nieuwenhuijse, D. F. y Koopmans, M. P. G. (2017). Metagenomic sequencing for surveillance of food- and waterborne viral diseases. Frontiers in Microbio­logy, 8, 230.

Park, E. J., Kim, K. H., Abell, G. C. J., Kim, M. S., Roh, S. W. y Bae, J. W. (2011). Me­tagenomic analysis of the viral commu­nities in fermented foods. Applied and Environmental Microbiology, 77 (4), pp. 1284-1291.

Persson, S., Eriksson, R., Lowther, J., Ells­tröm, P. y Simonsson, M. (2018). Com­parison between RT droplet digital PCR and RT real-time PCR for quantification of noroviruses in oysters. International Journal of Food Microbiology, 284, pp. 73-83.

Prevost, B., Goulet, M., Lucas, F. S., Joyeux, M., Moulin, L. y Wurtzer, S. (2016). Viral persistence in surface and drin­king water: Suitability of PCR pre-treatment with intercalating dyes. Wa­ter Research, 91, pp. 68-76.

Randazzo, W., D’Souza, D. H. y Sanchez, G. (2018). Norovirus: The Burden of the Unknown. En Rodriguez-Lazaro, D. (ed.) Advances in Food and Nutrition Research (vol. 86). Academic Press, pp. 13-53.

Randazzo, W., Fabra, M. J., Falcó, I., López- Rubio, A. y Sánchez, G. (2018). Poly­mers and Biopolymers with Antiviral Activity: Potential Applications for Im­proving Food Safety. Comprehensive Reviews in Food Science and Food Sa­fety, 17 (3), pp. 754-768.

Randazzo, W., Falcó, I., Aznar, R. y Sánchez, G. (2017). Effect of green tea extract on enteric viruses and its application as natural sanitizer. Food Microbiology, 66, pp. 150-156.

Randazzo, W., Khezri, M., Ollivier, J., Le Gu­yader, F. S., Rodríguez-Díaz, J., Aznar, R. y Sánchez, G. (2018). Optimization of PMAxx pretreatment to distinguish between human norovirus with intact and altered capsids in shellfish and sewage samples. International Journal of Food Microbiology, 266, pp. 1-7.

Randazzo, W., Vasquez-García, A., Aznar, R. y Sánchez, G. (2018). Viability RT-qPCR to distinguish between HEV and HAV with intact and altered capsids. Fron­tiers in Microbiology, 9, 1973.

Ricci, A., Allende, A., Bolton, D., Chemaly, M., Davies, R., Fernandez Escamez, P. S. […] y Girones, R. (2017). Public health risks associated with hepatitis E virus (HEV) as a food‐borne pathogen. EFSA Journal, 15 (7), e04886.

Sánchez, G. (2015). Processing Strategies to Inactivate Hepatitis A Virus in Food Products: A Critical Review. Comprehen­sive Reviews in Food Science and Food Safety, 14 (6), pp. 771-784.

Sánchez, G., Elizaquível, P. y Aznar, R. (2012). Discrimination of Infectious Hepatitis A Viruses by Propidium Monoazide Real- Time RT-PCR. Food and Environmental Virology, 4 (1), pp. 21-25.

Varela, M. F., Monteiro, S., Rivadulla, E., San­tos, R. y Romalde, J. L. (2018). Develop­ment of a novel digital RT-PCR method for detection of human sapovirus in di­fferent matrices. Journal of Virological Methods, 254, pp. 21-24.

Yang, Z., Mammel, M., Papafragkou, E., Hida, K., Elkins, C. A. y Kulka, M. (2017). Application of next generation sequen­cing toward sensitive detection of ente­ric viruses isolated from celery samples as an example of produce. International Journal of Food Microbiology, 261, pp. 73-81.

Recursos en línea

ISO 15216-1:2017. Microbiology of the Food Chain — Horizontal Method for Determination of Hepatitis A Virus and Norovirus Using Real-time RT-PCR — Part 1: Method for Quantification. [En línea]. Disponible en https://www.iso. org/obp/ui/#iso:std:iso:15216:-1:ed- 1:v1:en

World Health Organization. WHO estima­tes of the global burden of foodborne diseases. Foodborne diseases burden epidemiology reference group 2007– 2015. [En línea]. Disponible en https:// apps.who.int/iris/bitstream/hand­le/10665/199350/9789241565165_ eng.pdf?sequence=1




Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista arbor@csic.es

Soporte técnico soporte.tecnico.revistas@csic.es