Relevance of fresh fruits and vegetables in foodborne outbreaks and the significance of the physiological state of bacteria

Authors

DOI:

https://doi.org/10.3989/arbor.2020.795n1005

Keywords:

fresh produce, viable but non cultivable, food safety, pathogenic bacteria, primary production

Abstract


Fruits and vegetables have always been in the news, mainly because of their beneficial properties for human health. However, they increasingly occupy headlines due to their involvement in foodborne outbreaks. This is the reason why, since 2008, many international organizations consider fruit and vegetables risky food. One major microbiological concern regarding the safety of leafy greens is that pathogenic microorganisms are able to adhere to and survive on plant tissue during cultivation and processing, coexist with epiphytic bacteria and persist for long periods of time. The prevalence of pathogenic microorganisms in fruits and vegetables is low (<1%) and enumeration of pathogenic or indicator bacteria usually show very low numbers, which do not explain the high number of microbiological alerts associated with this types of products. However, concerns have been raised regarding how representative the enumeration of bacteria using plate count techniques may be. Several studies have shown that when bacteria are subjected to different stresses, they enter into a temporary state of low metabolic activity in which the cells can persist for long periods of time without cell division, called latency or viable but non-culturable (VBNC). The significance that the physiological state of bacteria might have in the development of foodborne diseases caused by fruits and vegetables is getting a lot of attention and much research is now focused on this topic.

Downloads

Download data is not yet available.

References

Anderson, M., Bollinger, D., Hagler, A., Hart­well, H., Rivers, B., Ward, K. y Steck, T. R. (2004). Viable but nonculturable bacte­ria are present in mouse and human uri­ne specimens. Journal of Clinical Micro­biology, 42 (2), pp. 753-758. https://doi.org/10.1128/JCM.42.2.753-758.2004 PMid:14766848 PMCid:PMC344478

Anuchin, A. M., Mulyukin, A. L., Suzina, N. E., Duda, V. I., El-Registan, G. I. y Ka­prelyants, A. S. (2009). Dormant forms of Mycobacterium smegmatis with distinct morphology. Microbiology, 155 (4), pp. 1071-1079. https://doi.org/10.1099/mic.0.023028-0 PMid:19332809

Anvarian, A. H. P., Smith, M. P. y Overton, T. W. (2016). The effects of orange juice clarification on the physiology of Esche­richia coli; growth-based and flow cyto­metric analysis. International Journal of Food Microbiology, 219, pp. 38-43. https://doi.org/10.1016/j.ijfoodmicro.2015.11.016 PMid:26705746

Asakura, H., Kawamoto, K., Haishima, Y., Igi­mi, S., Yamamoto, S. y Makino, S. I. (2008). Differential expression of the outer mem­brane protein W (OmpW) stress respon­se in enterohemorrhagic Escherichia coli O157:H7 corresponds to the viable but non-culturable state. Research in Micro­biology, 159 (9-10), pp. 709-717. https://doi.org/10.1016/j.resmic.2008.08.005 PMid:18824229

Aurass, P., Prager, R. y Flieger, A. (2011). EHEC/EAEC O104:H4 strain linked with the 2011 German outbreak of haemo­lytic uremic syndrome enters into the viable but non-culturable state in res­ponse to various stresses and resusci­tates upon stress relief. Environmental Microbiology, 13 (12), pp. 3139-3148. https://doi.org/10.1111/j.1462-2920.2011.02604.x PMid:21951606

Ayrapetyan, M., Williams, T. C., Baxter, R. y Oliver, J. D. (2015). Viable but non­culturable and persister cells coexist stochastically and are induced by hu­man serum. Infection and Immunity, 83 (11), pp. 4194-4203. https://doi.org/10.1128/IAI.00404-15 PMid:26283335 PMCid:PMC4598401

Berney, M., Hammes, F., Bosshard, F., Weilenmann, H. U. y Egli, T. (2007). Assessment and interpretation of bac­terial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Applied Environmental Mi­crobiology, 73 (10), pp. 3283-3290. https://doi.org/10.1128/AEM.02750-06 PMid:17384309 PMCid:PMC1907116

Besnard, V., Federighi, M. y Cappelier, J. M. (2000). Evidence of Viable but Non-culturable state in Listeria mono­cytogenes by direct viable count and CTC-DAPI double staining. Food Micro­biology, 17 (6), pp. 697-704. https://doi.org/10.1006/fmic.2000.0366

Besnard, V., Federighi, M., Declerq, E., Jugiau, F. y Cappelier, J. M. (2002). Environmen­tal and physico-chemical factors induce VBNC state in Listeria monocytogenes. Veterinary Research, 33 (4), pp. 359-370. https://doi.org/10.1051/vetres:2002022 PMid:12199363

Bridier, A., Hammes, F., Canette, A., Bou­chez, T. y Briandet, R. (2015). Fluores­cence-based tools for single-cell approa­ches in food microbiology. International Journal of Food Microbiology, 213, pp. 2-16. https://doi.org/10.1016/j.ijfoodmicro.2015.07.003 PMid:26163933

Cappelier, J. M., Besnard, V., Roche, S. M., Velge, P. y Federighi, M. (2007). Aviru­lent viable but non culturable cells of Listeria monocytogenes need the pre­sence of an embryo to be recovered in egg yolk and regain virulence after recovery. Veterinary Research, 38 (4), pp. 573-583. https://doi.org/10.1051/vetres:2007017 PMid:17540159

Cook, K. L. y Bolster, C. H. (2007). Survival of Campylobacter jejuni and Escherichia coli in groundwater during prolonged starvation at low temperatures. Jour­nal of Applied Microbiology, 103 (3), pp. 573-583. https://doi.org/10.1111/j.1365-2672.2006.03285.x PMid:17714390

Costa, K., Bacher, G., Allmaier, G., Domin­guez-Bello, M. G., Engstrand, L., Falk, P., de Pedro, M. A. y García-del Portillo F. (1999). The morphological transition of Helicobacter pylori cells from spi­ral to coccoid is preceded by a subs­tantial modification of the cell wall. Journal of Bacteriology, 181 (12), pp. 3710-3715. https://doi.org/10.1128/JB.181.12.3710-3715.1999 PMid:10368145

Cunningham, E., O'Byrne, C. y Oliver, J. D. (2009). Effect of weak acids on Liste­ria monocytogenes survival: evidence for a viable but nonculturable state in response to low pH. Food Control, 20 (12), pp. 1141-1144. https://doi.org/10.1016/j.foodcont.2009.03.005

Day, A. P. y Oliver J. D. (2004). Changes in membrane fatty acid composition du­ring entry of Vibrio vulnificus into the viable but non-culturable state. Journal of Microbiology, 42 (2), pp. 69-73.

Ding, T., Suo, Y., Xiang, Q., Zhao, X., Chen, S., Ye, X. y Liu D. (2017). Significance of viable but nonculturable Escherichia coli: induction, detection, and control. Journal of Microbiology and Biotech­nology, 27 (3), pp. 417-428. https://doi.org/10.4014/jmb.1609.09063 PMid:27974738

Dinu, L. D. y Bach, S. (2011). Induction of viable but nonculturable Escherichia coli O157:H7 in the phyllosphere of lettuce: a food safety risk factor. Applied Envi­ronmental Microbiology, 77 (23), pp. 8295-8302. https://doi.org/10.1128/AEM.05020-11 PMid:21965401 PMCid:PMC3233046

EFSA Panel on Biological Hazards (BIO­HAZ). (2013). Scientific Opinion on the Risk Posed by Pathogens in Food of Non-animal Origin. Part 1 (outbreak data analysis and risk ranking of food/ pathogen combinations). EFSA Journal, 11 (1), 3025. https://doi.org/10.2903/j.efsa.2013.3025

Elizaquível, P., Sánchez, G. y Aznar, R. (2012). Quantitative detection of viable foodborne E. coli O157:H7, Listeria mo­nocytogenes and Salmonella in fresh-cut vegetables combining propidium monoazide and real-time PCR. Food Control, 25 (2), pp. 704-708. https://doi.org/10.1016/j.foodcont.2011.12.003

Fakruddin, M, Bin Mannan, K. S. y An­drews, S. (2013). Viable but Non cul­turable Bacteria: Food Safety and Public Health Perspective. ISRN Mi­crobiology, 2013, 703813. https://doi.org/10.1155/2013/703813 PMid:24191231 PMCid:PMC3804398

Fang, J., Wu, Y., Qu, D., Ma B., Yu X., Zhang, M. y Han, J. (2018). Propidium monoazi­de Real-time loop-mediated isothermal amplification for specific visualization of viable Salmonella in food. Letters in Applied Microbiology, 67 (1), pp. 79-88. https://doi.org/10.1111/lam.12992 PMid:29665023

Fischer-Le Saux, M., Hervio-Heath, D., Loaec, S., Colwel, R. R. y Pommepuy, M. (2002). Detection of cytotoxin-hemolysin mRNA in nonculturable populations of envi­ronmental and clinical Vibrio vulnificus strains in artificial seawater. Applied En­vironmental Microbiology, 68 (11), pp. 5641-5646. https://doi.org/10.1128/AEM.68.11.5641-5646.2002 PMid:12406760 PMCid:PMC129913

Fittipaldi, M., Nocker, M. A. y Codony, F. (2012). Progress in understanding pre­ferential detection of live cells using viability dyes in combination with DNA amplification. Journal Microbiology Methods, 91 (2), pp. 276-289. https://doi.org/10.1016/j.mimet.2012.08.007 PMid:22940102

Gensberger, E. T., Polt, M., Konrad-Köszler, M., Kinner, P., Sessitsch, A. y Kostic, T. (2014). Evaluation of quantitative PCR combined with PMA treatment for molecular assessment of microbial water quality. Water Research, 67, pp. 367-376. https://doi.org/10.1016/j.watres.2014.09.022 PMid:25459225

Habimana, O., Nesse, L. L., Møretrø. T., Berg, K., Heir, E., Vestby, L. K. y Langs­rud. S. (2014). The persistence of Salmo­nella following desiccation under feed processing environmental conditions: a subject of relevance. Letters in Applied Microbiology, 59 (5), pp. 464-470. https://doi.org/10.1111/lam.12308 PMid:25046569

Highmore, C. J., Warner, J. C., Rothwell, S. D., Wilks, S. A. y Keevil, C. W. (2018). Viable-but nonculturable Listeria mo­nocytogenes and Salmonella enterica serovar thompson induced by chlorine stress remain infectious. MBio, 9 (2), e00540-18. https://doi.org/10.1128/mBio.00540-18 PMid:29666286 PMCid:PMC5904417

Kana, B. D., Gordhan B. G., Downing K. J., Sung N., Vostroktunova G., Machows­ki E. E., Tsenova, L., Young, M., Ka­prelyants, A., Kaplan, G. y Mizrahi V. (2008). The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscita­tion from dormancy but are collectively dispensable for growth in vitro. Mo­lecular Microbiology, 67 (3), pp. 672- 684. https://doi.org/10.1111/j.1365-2958.2007.06078.x PMid:18186793 PMCid:PMC2229633

Kell, D. B., Kaprelyants, A. S., Weichart, D. H., Harwood, C. R. y Barer, M. R. (1998). Viability and activity in readily cultura­ble bacteria: a review and discussion of the practical issues. Antonie van Leeuw­enhoek, 73 (2), pp. 169-187. https://doi.org/10.1023/A:1000664013047 PMid:9717575

Lai, C. J., Chen, S. Y., Lin, I. H., Chang, C. H. y Wong, H. C. (2009). Change of protein profiles in the induction of the viable but non culturable state of Vibrio pa­rahaemolyticus. International Journal of Food Microbiology, 135 (2), pp. 118- 124. https://doi.org/10.1016/j.ijfoodmicro.2009.08.023 PMid:19735955

Li, D., Tong, T., Zeng, S., Lin, Y., Wu, S. y He, M. (2014). Quantification of via­ble bacteria in wastewater treatment plants by using propidium monoazide combined with quantitative PCR (PMA-qPCR). Journal of Environmental Scien­ces, 26 (2), pp. 299-306. https://doi.org/10.1016/S1001-0742(13)60425-8

Mascher, F., Hase, C., Moenne-Loccoz, Y. y Défago, G. (2000). The viable-but-nonculturable state induced by abiotic stress in the biocontrol agent Pseu­domonas fluorescens CHA0 does not promote strain persistence in soil. Applied and Environmental Microbiolo­gy, 66 (4), pp. 1662-1667. https://doi.org/10.1128/AEM.66.4.1662-1667.2000 PMid:10742257 PMCid:PMC92038

Makino, S. I., Kii, T., Asakura, H., Shirahata, T., Ikeda, T., Takeshi, K. y Itoh, K. (2000). Does enterohemorrhagic Escherichia coli O157:H7 enter the viable but non culturable state in salted salmon roe? Applied Environmental Microbiolo­gy, 66 (12), pp. 5536-5539. https://doi.org/10.1128/AEM.66.12.5536-5539.2000 PMid:11097946 PMCid:PMC92500

Moyle, A. L., Harris, L. J. y Marco, M. L. (2013). Assessments of total and viable Escherichia coli O157:H7 on field and laboratory grown lettuce. PLoS One, 8 (7), e70643. https://doi.org/10.1371/journal.pone.0070643 PMid:23936235 PMCid:PMC3728298

Nicolò, M. S. y Guglielmino, S. P. P. (2012). Viable but nonculturable bacteria in food. En Maddock, J. (ed.). Public Health-Methodology, Environmental and Systems Issues. Rjeka: InTech, pp. 189-216.

Nkuipou-Kenfack, E., Engel, H., Fakih, S. y Nocker, A. (2013). Improving efficiency of viability-PCR for selective detection of live cells. Journal of Microbiological Methods, 93 (1), pp. 20-24. https://doi.org/10.1016/j.mimet.2013.01.018 PMid:23389080

Nocker, A. y Camper, A. K. (2009). Novel ap­proaches toward preferential detection of viable cells using nucleic acid amplifi­cation techniques. FEMS. Microbiology Letter, 291 (2), pp. 137-142. https://doi.org/10.1111/j.1574-6968.2008.01429.x PMid:19054073

Nyström, T. (2003). Nonculturable bac­teria: programmed survival forms or cells at death's door? Bioessays, 25 (3), pp. 204-211. https://doi.org/10.1002/bies.10233 PMid:12596224

Oliver, J. D. (2005). The viable but noncultu­rable state in bacteria. Journal of Micro­biology, 43 (1), pp. 93-100.

Oliver, J. D. (2010). Recent findings on the viable but nonculturable state in patho­genic bacteria. FEMS Microbiology Re­views, 34 (4), pp. 415-425. https://doi.org/10.1111/j.1574-6976.2009.00200.x PMid:20059548

Pommepuy, M., Butin, M., Derrien, A., Gourmelon, M., Colwell, R. y Cormier, M. (1996). Retention of enteropathogenicity by viable but nonculturable Es­cherichia coli exposed to seawater and sunlight. Applied Environmental Micro­biology, 62 (12), pp. 4621-4626. https://doi.org/10.1128/AEM.62.12.4621-4626.1996 PMid:8953732

Rastogi, G., Sbodio, A., Tech, J. J., Suslow, T. V., Coaker, G. L. y Leveau J. H. (2012). Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. The ISME Journal, 6 (10), pp. 1812-1822. https://doi.org/10.1038/ismej.2012.32 PMid:22534606 PMCid:PMC3446804

Sieracki, M. E., Cucci, T. L. y Nicinski, J. (1999). Flow cytometric analysis of 5-cyano-2,3-ditolyl tetrazolium chlo­ride activity of marine bacterioplank­ton in dilution cultures. Applied Envi­ronmental Microbiology, 65 (6), pp. 2409-2417. https://doi.org/10.1128/AEM.65.6.2409-2417.1999 PMid:10347021

Signoretto, C., Lleo, M. D. M. y Canepari. P. (2002). Modification of the peptidogly­can of Escherichia coli in the viable but nonculturable state. Current Microbio­logy, 44 (2), pp. 125-131. https://doi.org/10.1007/s00284-001-0062-0 PMid:11815857

Tamburini, S., Foladori, P., Ferrentino, G., Spilimbergo, S. y Jousson, O. (2014). Accurate flow cytometric monitoring of Escherichia coli subpopulations on solid food treated with high pressure carbon dioxide. Journal of Applied Microbiolo­gy, 117 (2), pp. 440-450. https://doi.org/10.1111/jam.12528 PMid:24766564

Tombini Decol, L., López-Gálvez, F., Trucha­do, P., Tondo, E. C., Gil, M. I. y Allende, A. (2019). Suitability of chlorine dioxi­de as a tertiary treatment for munici­pal wastewater and use of reclaimed water for overhead irrigation of baby lettuce. Food Control, 96, pp. 186- 193. https://doi.org/10.1016/j.foodcont.2018.08.036

Truchado, P., Gil, M. I., Kostic, T. y Allende, A. (2016). Optimization and validation of a PMA-qPCR method for Esche­richia coli quantification in primary production. Food Control, 62, pp. 150- 156. https://doi.org/10.1016/j.foodcont.2015.10.014

Van der Linden, I., Cottyn, B., Uyttendaele, M., Vlaemynck, G., Maes, M. y Heyn­drickx, M. (2014). Evaluation of an atta­chment assay on lettuce leaves with temperature and starvation stressed Es­cherichia coli O157:H7 MB3885. Journal of Food Protection, 77 (4), pp. 549-557. https://doi.org/10.4315/0362-028X.JFP-13-332 PMid:24680065

Van Frankenhuyzen, J. K., Trevors, J. T., Flemming, C. A., Lee, H. y Habash, M. B. (2013). Optimization, validation, and application of a real-time PCR proto­col for quantification of viable bacte­rial cells in municipal sewage sludge and biosolids using reporter genes and Escherichia coli. Journal of Indus­trial Microbiology and Biotechnology, 40 (11), pp.1251-1261. https://doi.org/10.1007/s10295-013-1319-x PMid:23958912

Wan, C., Yang, Y., Xu, H., Aguilar, Z. P., Liu, C., Lai, W., Xiong, Y., Xu, F. y Wei, H. (2012). Development of a propidium monoazi­de treatment combined with loop-me­diated isothermal amplification (PMA-LAMP) assay for rapid detection of viable Listeria monocytogenes. International Journal of Food Science and Technolo­gy. 47 (11), pp. 2460-2467. https://doi.org/10.1111/j.1365-2621.2012.03123.x

Wang, L., Li, P., Zhang, Z., Chen, Q., Aguilar, Z. P. y Xu, H. (2014). Rapid and accura­te detection of viable Escherichia coli O157: H7 in milk using a combined IMS, sodium deoxycholate, PMA and real-time quantitative PCR process. Food Control, 36 (1), pp. 119-125. https://doi.org/10.1016/j.foodcont.2013.08.011

Winkelströter, L. K. y De Martinis, E. C. P. (2015). Different methods to quan­tify Listeria monocytogenes biofilms cells showed different profile in their viability. Brazilian Journal of Microbio­logy. 46 (1), pp. 231-235. https://doi.org/10.1590/S1517-838220131071 PMid:26221112 PMCid:PMC4512067

Xu, H. S., Roberts, N., Singleton, F. L., Att­well, R. W., Grimes, D. J. y Colwell, R. R. (1982). Survival and viability of non­culturable Escherichia coli and Vibrio cholera in the estuarine and marine environment. Microbial Ecology, 8 (4), pp. 313-323. https://doi.org/10.1007/BF02010671 PMid:24226049

Zhang, S., Ye, C., Lin, H., Lv, L. y Yu, X. (2015). UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeru­ginosa. Environmental Science Techno­logy, 49 (3), pp. 1721-1728. https://doi.org/10.1021/es505211e PMid:25584685

Zhao, X., Wang, J., Forghani, F., Park J. H, Park M. S, Seo, K. H. y Oh, D. H. (2013). Rapid detection of viable Escherichia coli O157 by coupling propidium mo­noazide with loop-mediated isother­mal amplification. Journal of Microbio­logy and Biotechnology, 23 (12), pp. 1708-1716. https://doi.org/10.4014/jmb.1306.06003 PMid:24002453

Zhao, X., Zhong, J., Wei, C., Lin, C. W. y Ding, T. (2017). Current perspectives on viable but non-culturable state in food­borne pathogens. Frontiers in Microbio­logy, 8, 580. https://doi.org/10.3389/fmicb.2017.00580

Zhou, B., Liang, T., Zhan, Z., Liu, R., Li, F. y Xu, H. (2017). Rapid and simultaneous quantification of viable Escherichia coli O157:H7 and Salmonella spp. in milk through multiplex real-time PCR. Journal of Dairy Science, 100 (11), 8804-8813. https://doi.org/10.3168/jds.2017-13362 PMid:28865862

Recursos en línea

Commission Regulation (EC) No 2073/2005 of 15 November 2005 on micro­biological criteria for foodstuffs. [En línea]. Disponible en https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=celex:32005R2073

European Commission Notice No. 2017/C 163/01 on Guidance Document on Ad­dressing Microbiological Risks in Fresh Fruit and Vegetables at Primary Produc­tion through Good Hygiene. [En línea]. Disponible en https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52017XC0523%2803%29

FSMA Final Rule on Produce Safety. Stan­dards for the Growing, Harvesting, Pac­king, and Holding of Produce for Human Consumption. [En línea]. Disponible en https://www.fda.gov/food/food-safety-modernization-act-fsma/fsma-final-ru­le-produce-safety

Published

2020-03-30

How to Cite

Truchado, P., & Allende, A. (2020). Relevance of fresh fruits and vegetables in foodborne outbreaks and the significance of the physiological state of bacteria. Arbor, 196(795), a541. https://doi.org/10.3989/arbor.2020.795n1005

Issue

Section

Articles

Most read articles by the same author(s)