La implicación de las frutas y hortalizas en las toxiinfecciones alimentarias y la relevancia del estado fisiológico de las bacterias

Autores/as

DOI:

https://doi.org/10.3989/arbor.2020.795n1005

Palabras clave:

vegetales frescos, viable no cultivable, seguridad alimentaria, bacterias patógenas, producción primaria

Resumen


Las frutas y hortalizas han sido siempre noticia debido principalmente a sus propiedades beneficiosas para la salud. Sin embargo, cada vez más ocupan titulares debido a su implicación en toxiinfecciones alimentarias. Por este motivo, desde 2008, las frutas y hortalizas frescas son consideradas por muchos organismos internacionales como un alimento de riesgo. Uno de los principales problemas microbiológicos de las hortalizas de hojas son las bacte­rias entéricas que pueden adherirse rápidamente al tejido durante el cultivo, coexistir con las bacterias epífitas y persistir por largos periodos de tiempo. La prevalencia de microorganismos patógenos en las frutas y hortalizas es baja ( < 1%) y la cuantificación de las bac­terias patógenas o de microorganismos indicadores generalmente muestra niveles muy bajos, lo que no justificaría el elevado número de alertas microbiológicas asociadas a este tipo de productos. Sin embargo, existen dudas sobre si los recuentos obtenidos utilizan­do las técnicas convencionales son capaces de reflejar realmente todos los microorganismos presentes en el producto vegetal, así como en el agua de riego y en el suelo. Varios estudios han demos­trado que cuando las bacterias son sometidas a distintos factores de estrés entran en un estado temporal de baja actividad metabóli­ca en el cual las células pueden persistir durante largos periodos de tiempo sin división celular, llamado estado de latencia o viable pero no cultivable (VBNC). La relevancia que el estado fisiológico de las bacterias puede tener en el desarrollo de toxiinfecciones alimenta­rias causadas por las frutas y hortalizas es un tema de gran interés que está atrayendo más y más la atención de los investigadores.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Anderson, M., Bollinger, D., Hagler, A., Hart­well, H., Rivers, B., Ward, K. y Steck, T. R. (2004). Viable but nonculturable bacte­ria are present in mouse and human uri­ne specimens. Journal of Clinical Micro­biology, 42 (2), pp. 753-758.

Anuchin, A. M., Mulyukin, A. L., Suzina, N. E., Duda, V. I., El-Registan, G. I. y Ka­prelyants, A. S. (2009). Dormant forms of Mycobacterium smegmatis with distinct morphology. Microbiology, 155 (4), pp. 1071-1079.

Anvarian, A. H. P., Smith, M. P. y Overton, T. W. (2016). The effects of orange juice clarification on the physiology of Esche­richia coli; growth-based and flow cyto­metric analysis. International Journal of Food Microbiology, 219, pp. 38-43.

Asakura, H., Kawamoto, K., Haishima, Y., Igi­mi, S., Yamamoto, S. y Makino, S. I. (2008). Differential expression of the outer mem­brane protein W (OmpW) stress respon­se in enterohemorrhagic Escherichia coli O157:H7 corresponds to the viable but non-culturable state. Research in Micro­biology, 159 (9-10), pp. 709-717.

Aurass, P., Prager, R. y Flieger, A. (2011). EHEC/EAEC O104:H4 strain linked with the 2011 German outbreak of haemo­lytic uremic syndrome enters into the viable but non-culturable state in res­ponse to various stresses and resusci­tates upon stress relief. Environmental Microbiology, 13 (12), pp. 3139-3148.

Ayrapetyan, M., Williams, T. C., Baxter, R. y Oliver, J. D. (2015). Viable but non­culturable and persister cells coexist stochastically and are induced by hu­man serum. Infection and Immunity, 83 (11), pp. 4194-4203.

Berney, M., Hammes, F., Bosshard, F., Weilenmann, H. U. y Egli, T. (2007). Assessment and interpretation of bac­terial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Applied Environmental Mi­crobiology, 73 (10), pp. 3283-3290.

Besnard, V., Federighi, M. y Cappelier, J. M. (2000). Evidence of Viable but Non-culturable state in Listeria mono­cytogenes by direct viable count and CTC-DAPI double staining. Food Micro­biology, 17 (6), pp. 697-704.

Besnard, V., Federighi, M., Declerq, E., Jugiau, F. y Cappelier, J. M. (2002). Environmen­tal and physico-chemical factors induce VBNC state in Listeria monocytogenes. Veterinary Research, 33 (4), pp. 359-370.

Bridier, A., Hammes, F., Canette, A., Bou­chez, T. y Briandet, R. (2015). Fluores­cence-based tools for single-cell approa­ches in food microbiology. International Journal of Food Microbiology, 213, pp. 2-16.

Cappelier, J. M., Besnard, V., Roche, S. M., Velge, P. y Federighi, M. (2007). Aviru­lent viable but non culturable cells of Listeria monocytogenes need the pre­sence of an embryo to be recovered in egg yolk and regain virulence after recovery. Veterinary Research, 38 (4), pp. 573-583.

Cook, K. L. y Bolster, C. H. (2007). Survival of Campylobacter jejuni and Escherichia coli in groundwater during prolonged starvation at low temperatures. Jour­nal of Applied Microbiology, 103 (3), pp. 573-583.

Costa, K., Bacher, G., Allmaier, G., Domin­guez-Bello, M. G., Engstrand, L., Falk, P., de Pedro, M. A. y García-del Portillo F. (1999). The morphological transition of Helicobacter pylori cells from spi­ral to coccoid is preceded by a subs­tantial modification of the cell wall. Journal of Bacteriology, 181 (12), pp. 3710-3715.

Cunningham, E., O’Byrne, C. y Oliver, J. D. (2009). Effect of weak acids on Liste­ria monocytogenes survival: evidence for a viable but nonculturable state in response to low pH. Food Control, 20 (12), pp. 1141-1144.

Day, A. P. y Oliver J. D. (2004). Changes in membrane fatty acid composition du­ring entry of Vibrio vulnificus into the viable but non-culturable state. Journal of Microbiology, 42 (2), pp. 69-73.

Ding, T., Suo, Y., Xiang, Q., Zhao, X., Chen, S., Ye, X. y Liu D. (2017). Significance of viable but nonculturable Escherichia coli: induction, detection, and control. Journal of Microbiology and Biotech­nology, 27 (3), pp. 417-428.

Dinu, L. D. y Bach, S. (2011). Induction of viable but nonculturable Escherichia coli O157:H7 in the phyllosphere of lettuce: a food safety risk factor. Applied Envi­ronmental Microbiology, 77 (23), pp. 8295-8302.

EFSA Panel on Biological Hazards (BIO­HAZ). (2013). Scientific Opinion on the Risk Posed by Pathogens in Food of Non-animal Origin. Part 1 (outbreak data analysis and risk ranking of food/ pathogen combinations). EFSA Journal, 11 (1), 3025.

Elizaquível, P., Sánchez, G. y Aznar, R. (2012). Quantitative detection of viable foodborne E. coli O157:H7, Listeria mo­nocytogenes and Salmonella in fresh-cut vegetables combining propidium monoazide and real-time PCR. Food Control, 25 (2), pp. 704-708.

Fakruddin, M, Bin Mannan, K. S. y An­drews, S. (2013). Viable but Non cul­turable Bacteria: Food Safety and Public Health Perspective. ISRN Mi­crobiology, 2013, 703813.

Fang, J., Wu, Y., Qu, D., Ma B., Yu X., Zhang, M. y Han, J. (2018). Propidium monoazi­de Real-time loop-mediated isothermal amplification for specific visualization of viable Salmonella in food. Letters in Applied Microbiology, 67 (1), pp. 79-88.

Fischer-Le Saux, M., Hervio-Heath, D., Loaec, S., Colwel, R. R. y Pommepuy, M. (2002). Detection of cytotoxin-hemolysin mRNA in nonculturable populations of envi­ronmental and clinical Vibrio vulnificus strains in artificial seawater. Applied En­vironmental Microbiology, 68 (11), pp. 5641-5646.

Fittipaldi, M., Nocker, M. A. y Codony, F. (2012). Progress in understanding pre­ferential detection of live cells using viability dyes in combination with DNA amplification. Journal Microbiology Methods, 91 (2), pp. 276-289.

Gensberger, E. T., Polt, M., Konrad-Köszler, M., Kinner, P., Sessitsch, A. y Kostic, T. (2014). Evaluation of quantitative PCR combined with PMA treatment for molecular assessment of microbial water quality. Water Research, 67, pp. 367-376.

Habimana, O., Nesse, L. L., Møretrø. T., Berg, K., Heir, E., Vestby, L. K. y Langs­rud. S. (2014). The persistence of Salmo­nella following desiccation under feed processing environmental conditions: a subject of relevance. Letters in Applied Microbiology, 59 (5), pp. 464-470.

Highmore, C. J., Warner, J. C., Rothwell, S. D., Wilks, S. A. y Keevil, C. W. (2018). Viable-but nonculturable Listeria mo­nocytogenes and Salmonella enterica serovar thompson induced by chlorine stress remain infectious. MBio, 9 (2), e00540-18.

Kana, B. D., Gordhan B. G., Downing K. J., Sung N., Vostroktunova G., Machows­ki E. E., Tsenova, L., Young, M., Ka­prelyants, A., Kaplan, G. y Mizrahi V. (2008). The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscita­tion from dormancy but are collectively dispensable for growth in vitro. Mo­lecular Microbiology, 67 (3), pp. 672- 684.

Kell, D. B., Kaprelyants, A. S., Weichart, D. H., Harwood, C. R. y Barer, M. R. (1998). Viability and activity in readily cultura­ble bacteria: a review and discussion of the practical issues. Antonie van Leeuw­enhoek, 73 (2), pp. 169-187.

Lai, C. J., Chen, S. Y., Lin, I. H., Chang, C. H. y Wong, H. C. (2009). Change of protein profiles in the induction of the viable but non culturable state of Vibrio pa­rahaemolyticus. International Journal of Food Microbiology, 135 (2), pp. 118- 124.

Li, D., Tong, T., Zeng, S., Lin, Y., Wu, S. y He, M. (2014). Quantification of via­ble bacteria in wastewater treatment plants by using propidium monoazide combined with quantitative PCR (PMA-qPCR). Journal of Environmental Scien­ces, 26 (2), pp. 299-306.

Mascher, F., Hase, C., Moenne-Loccoz, Y. y Défago, G. (2000). The viable-but-nonculturable state induced by abiotic stress in the biocontrol agent Pseu­domonas fluorescens CHA0 does not promote strain persistence in soil. Applied and Environmental Microbiolo­gy, 66 (4), pp. 1662-1667.

Makino, S. I., Kii, T., Asakura, H., Shirahata, T., Ikeda, T., Takeshi, K. y Itoh, K. (2000). Does enterohemorrhagic Escherichia coli O157:H7 enter the viable but non culturable state in salted salmon roe? Applied Environmental Microbiolo­gy, 66 (12), pp. 5536-5539.

Moyle, A. L., Harris, L. J. y Marco, M. L. (2013). Assessments of total and viable Escherichia coli O157:H7 on field and laboratory grown lettuce. PLoS One, 8 (7), e70643.

Nicolò, M. S. y Guglielmino, S. P. P. (2012). Viable but nonculturable bacteria in food. En Maddock, J. (ed.). Public Health–Methodology, Environmental and Systems Issues. Rjeka: InTech, pp. 189–216.

Nkuipou-Kenfack, E., Engel, H., Fakih, S. y Nocker, A. (2013). Improving efficiency of viability-PCR for selective detection of live cells. Journal of Microbiological Methods, 93 (1), pp. 20-24.

Nocker, A. y Camper, A. K. (2009). Novel ap­proaches toward preferential detection of viable cells using nucleic acid amplifi­cation techniques. FEMS. Microbiology Letter, 291 (2), pp. 137-142.

Nyström, T. (2003). Nonculturable bac­teria: programmed survival forms or cells at death’s door? Bioessays, 25 (3), pp. 204-211.

Oliver, J. D. (2005). The viable but noncultu­rable state in bacteria. Journal of Micro­biology, 43 (1), pp. 93-100.

Oliver, J. D. (2010). Recent findings on the viable but nonculturable state in patho­genic bacteria. FEMS Microbiology Re­views, 34 (4), pp. 415-425.

Pommepuy, M., Butin, M., Derrien, A., Gourmelon, M., Colwell, R. y Cormier, M. (1996). Retention of enteropathogenicity by viable but nonculturable Es­cherichia coli exposed to seawater and sunlight. Applied Environmental Micro­biology, 62 (12), pp. 4621-4626.

Rastogi, G., Sbodio, A., Tech, J. J., Suslow, T. V., Coaker, G. L. y Leveau J. H. (2012). Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. The ISME Journal, 6 (10), pp. 1812-1822.

Sieracki, M. E., Cucci, T. L. y Nicinski, J. (1999). Flow cytometric analysis of 5-cyano-2,3-ditolyl tetrazolium chlo­ride activity of marine bacterioplank­ton in dilution cultures. Applied Envi­ronmental Microbiology, 65 (6), pp. 2409-2417.

Signoretto, C., Lleo, M. D. M. y Canepari. P. (2002). Modification of the peptidogly­can of Escherichia coli in the viable but nonculturable state. Current Microbio­logy, 44 (2), pp. 125-131.

Tamburini, S., Foladori, P., Ferrentino, G., Spilimbergo, S. y Jousson, O. (2014). Accurate flow cytometric monitoring of Escherichia coli subpopulations on solid food treated with high pressure carbon dioxide. Journal of Applied Microbiolo­gy, 117 (2), pp. 440-450.

Tombini Decol, L., López-Gálvez, F., Trucha­do, P., Tondo, E. C., Gil, M. I. y Allende, A. (2019). Suitability of chlorine dioxi­de as a tertiary treatment for munici­pal wastewater and use of reclaimed water for overhead irrigation of baby lettuce. Food Control, 96, pp. 186- 193.

Truchado, P., Gil, M. I., Kostic, T. y Allende, A. (2016). Optimization and validation of a PMA-qPCR method for Esche­richia coli quantification in primary production. Food Control, 62, pp. 150- 156.

Van der Linden, I., Cottyn, B., Uyttendaele, M., Vlaemynck, G., Maes, M. y Heyn­drickx, M. (2014). Evaluation of an atta­chment assay on lettuce leaves with temperature and starvation stressed Es­cherichia coli O157:H7 MB3885. Journal of Food Protection, 77 (4), pp. 549-557.

Van Frankenhuyzen, J. K., Trevors, J. T., Flemming, C. A., Lee, H. y Habash, M. B. (2013). Optimization, validation, and application of a real-time PCR proto­col for quantification of viable bacte­rial cells in municipal sewage sludge and biosolids using reporter genes and Escherichia coli. Journal of Indus­trial Microbiology and Biotechnology, 40 (11), pp.1251-1261.

Wan, C., Yang, Y., Xu, H., Aguilar, Z. P., Liu, C., Lai, W., Xiong, Y., Xu, F. y Wei, H. (2012). Development of a propidium monoazi­de treatment combined with loop-me­diated isothermal amplification (PMA-LAMP) assay for rapid detection of viable Listeria monocytogenes. International Journal of Food Science and Technolo­gy. 47 (11), pp. 2460-2467.

Wang, L., Li, P., Zhang, Z., Chen, Q., Aguilar, Z. P. y Xu, H. (2014). Rapid and accura­te detection of viable Escherichia coli O157: H7 in milk using a combined IMS, sodium deoxycholate, PMA and real-time quantitative PCR process. Food Control, 36 (1), pp. 119-125.

Winkelströter, L. K. y De Martinis, E. C. P. (2015). Different methods to quan­tify Listeria monocytogenes biofilms cells showed different profile in their viability. Brazilian Journal of Microbio­logy. 46 (1), pp. 231-235.

Xu, H. S., Roberts, N., Singleton, F. L., Att­well, R. W., Grimes, D. J. y Colwell, R. R. (1982). Survival and viability of non­culturable Escherichia coli and Vibrio cholera in the estuarine and marine environment. Microbial Ecology, 8 (4), pp. 313-323.

Zhang, S., Ye, C., Lin, H., Lv, L. y Yu, X. (2015). UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeru­ginosa. Environmental Science Techno­logy, 49 (3), pp. 1721-1728.

Zhao, X., Wang, J., Forghani, F., Park J. H, Park M. S, Seo, K. H. y Oh, D. H. (2013). Rapid detection of viable Escherichia coli O157 by coupling propidium mo­noazide with loop-mediated isother­mal amplification. Journal of Microbio­logy and Biotechnology, 23 (12), pp. 1708-1716.

Zhao, X., Zhong, J., Wei, C., Lin, C. W. y Ding, T. (2017). Current perspectives on viable but non-culturable state in food­borne pathogens. Frontiers in Microbio­logy, 8, 580.

Zhou, B., Liang, T., Zhan, Z., Liu, R., Li, F. y Xu, H. (2017). Rapid and simultaneous quantification of viable Escherichia coli O157:H7 and Salmonella spp. in milk through multiplex real-time PCR. Journal of Dairy Science, 100 (11), 8804-8813.

Recursos en línea

Commission Regulation (EC) No 2073/2005 of 15 November 2005 on micro­biological criteria for foodstuffs. [En línea]. Disponible en https:// eur-lex.europa.eu/legal-content/ES/ TXT/?uri=celex:32005R2073

European Commission Notice No. 2017/C 163/01 on Guidance Document on Ad­dressing Microbiological Risks in Fresh Fruit and Vegetables at Primary Produc­tion through Good Hygiene. [En línea]. Disponible en https://eur-lex.europa. eu/legal-content/EN/TXT/?uri=CELEX% 3A52017XC0523%2803%29

FSMA Final Rule on Produce Safety. Stan­dards for the Growing, Harvesting, Pac­king, and Holding of Produce for Human Consumption. [En línea]. Disponible en https://www.fda.gov/food/food-safety-modernization-act-fsma/fsma-final-ru­le-produce-safety

Publicado

2020-03-30

Cómo citar

Truchado, P., & Allende, A. (2020). La implicación de las frutas y hortalizas en las toxiinfecciones alimentarias y la relevancia del estado fisiológico de las bacterias. Arbor, 196(795), a541. https://doi.org/10.3989/arbor.2020.795n1005

Número

Sección

Artículos

Artículos más leídos del mismo autor/a