Arbor, Vol 196, No 795 (2020)

La implicación de las frutas y hortalizas en las toxiinfecciones alimentarias y la relevancia del estado fisiológico de las bacterias


https://doi.org/10.3989/arbor.2020.795n1005

Pilar Truchado
Centro de Edafología y Biología Aplicada del Segura (CEBAS). Consejo Superior de Investigaciones Científicas, España
orcid https://orcid.org/0000-0002-9517-6740

Ana Allende
Centro de Edafología y Biología Aplicada del Segura (CEBAS). Consejo Superior de Investigaciones Científicas, España
orcid https://orcid.org/0000-0002-5622-4332

Resumen


Las frutas y hortalizas han sido siempre noticia debido principalmente a sus propiedades beneficiosas para la salud. Sin embargo, cada vez más ocupan titulares debido a su implicación en toxiinfecciones alimentarias. Por este motivo, desde 2008, las frutas y hortalizas frescas son consideradas por muchos organismos internacionales como un alimento de riesgo. Uno de los principales problemas microbiológicos de las hortalizas de hojas son las bacte­rias entéricas que pueden adherirse rápidamente al tejido durante el cultivo, coexistir con las bacterias epífitas y persistir por largos periodos de tiempo. La prevalencia de microorganismos patógenos en las frutas y hortalizas es baja ( < 1%) y la cuantificación de las bac­terias patógenas o de microorganismos indicadores generalmente muestra niveles muy bajos, lo que no justificaría el elevado número de alertas microbiológicas asociadas a este tipo de productos. Sin embargo, existen dudas sobre si los recuentos obtenidos utilizan­do las técnicas convencionales son capaces de reflejar realmente todos los microorganismos presentes en el producto vegetal, así como en el agua de riego y en el suelo. Varios estudios han demos­trado que cuando las bacterias son sometidas a distintos factores de estrés entran en un estado temporal de baja actividad metabóli­ca en el cual las células pueden persistir durante largos periodos de tiempo sin división celular, llamado estado de latencia o viable pero no cultivable (VBNC). La relevancia que el estado fisiológico de las bacterias puede tener en el desarrollo de toxiinfecciones alimenta­rias causadas por las frutas y hortalizas es un tema de gran interés que está atrayendo más y más la atención de los investigadores.

Palabras clave


vegetales frescos; viable no cultivable; seguridad alimentaria; bacterias patógenas; producción primaria

Texto completo:


HTML PDF XML

Referencias


Anderson, M., Bollinger, D., Hagler, A., Hart­well, H., Rivers, B., Ward, K. y Steck, T. R. (2004). Viable but nonculturable bacte­ria are present in mouse and human uri­ne specimens. Journal of Clinical Micro­biology, 42 (2), pp. 753-758.

Anuchin, A. M., Mulyukin, A. L., Suzina, N. E., Duda, V. I., El-Registan, G. I. y Ka­prelyants, A. S. (2009). Dormant forms of Mycobacterium smegmatis with distinct morphology. Microbiology, 155 (4), pp. 1071-1079.

Anvarian, A. H. P., Smith, M. P. y Overton, T. W. (2016). The effects of orange juice clarification on the physiology of Esche­richia coli; growth-based and flow cyto­metric analysis. International Journal of Food Microbiology, 219, pp. 38-43.

Asakura, H., Kawamoto, K., Haishima, Y., Igi­mi, S., Yamamoto, S. y Makino, S. I. (2008). Differential expression of the outer mem­brane protein W (OmpW) stress respon­se in enterohemorrhagic Escherichia coli O157:H7 corresponds to the viable but non-culturable state. Research in Micro­biology, 159 (9-10), pp. 709-717.

Aurass, P., Prager, R. y Flieger, A. (2011). EHEC/EAEC O104:H4 strain linked with the 2011 German outbreak of haemo­lytic uremic syndrome enters into the viable but non-culturable state in res­ponse to various stresses and resusci­tates upon stress relief. Environmental Microbiology, 13 (12), pp. 3139-3148.

Ayrapetyan, M., Williams, T. C., Baxter, R. y Oliver, J. D. (2015). Viable but non­culturable and persister cells coexist stochastically and are induced by hu­man serum. Infection and Immunity, 83 (11), pp. 4194-4203.

Berney, M., Hammes, F., Bosshard, F., Weilenmann, H. U. y Egli, T. (2007). Assessment and interpretation of bac­terial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Applied Environmental Mi­crobiology, 73 (10), pp. 3283-3290.

Besnard, V., Federighi, M. y Cappelier, J. M. (2000). Evidence of Viable but Non-culturable state in Listeria mono­cytogenes by direct viable count and CTC-DAPI double staining. Food Micro­biology, 17 (6), pp. 697-704.

Besnard, V., Federighi, M., Declerq, E., Jugiau, F. y Cappelier, J. M. (2002). Environmen­tal and physico-chemical factors induce VBNC state in Listeria monocytogenes. Veterinary Research, 33 (4), pp. 359-370.

Bridier, A., Hammes, F., Canette, A., Bou­chez, T. y Briandet, R. (2015). Fluores­cence-based tools for single-cell approa­ches in food microbiology. International Journal of Food Microbiology, 213, pp. 2-16.

Cappelier, J. M., Besnard, V., Roche, S. M., Velge, P. y Federighi, M. (2007). Aviru­lent viable but non culturable cells of Listeria monocytogenes need the pre­sence of an embryo to be recovered in egg yolk and regain virulence after recovery. Veterinary Research, 38 (4), pp. 573-583.

Cook, K. L. y Bolster, C. H. (2007). Survival of Campylobacter jejuni and Escherichia coli in groundwater during prolonged starvation at low temperatures. Jour­nal of Applied Microbiology, 103 (3), pp. 573-583.

Costa, K., Bacher, G., Allmaier, G., Domin­guez-Bello, M. G., Engstrand, L., Falk, P., de Pedro, M. A. y García-del Portillo F. (1999). The morphological transition of Helicobacter pylori cells from spi­ral to coccoid is preceded by a subs­tantial modification of the cell wall. Journal of Bacteriology, 181 (12), pp. 3710-3715.

Cunningham, E., O’Byrne, C. y Oliver, J. D. (2009). Effect of weak acids on Liste­ria monocytogenes survival: evidence for a viable but nonculturable state in response to low pH. Food Control, 20 (12), pp. 1141-1144.

Day, A. P. y Oliver J. D. (2004). Changes in membrane fatty acid composition du­ring entry of Vibrio vulnificus into the viable but non-culturable state. Journal of Microbiology, 42 (2), pp. 69-73.

Ding, T., Suo, Y., Xiang, Q., Zhao, X., Chen, S., Ye, X. y Liu D. (2017). Significance of viable but nonculturable Escherichia coli: induction, detection, and control. Journal of Microbiology and Biotech­nology, 27 (3), pp. 417-428.

Dinu, L. D. y Bach, S. (2011). Induction of viable but nonculturable Escherichia coli O157:H7 in the phyllosphere of lettuce: a food safety risk factor. Applied Envi­ronmental Microbiology, 77 (23), pp. 8295-8302.

EFSA Panel on Biological Hazards (BIO­HAZ). (2013). Scientific Opinion on the Risk Posed by Pathogens in Food of Non-animal Origin. Part 1 (outbreak data analysis and risk ranking of food/ pathogen combinations). EFSA Journal, 11 (1), 3025.

Elizaquível, P., Sánchez, G. y Aznar, R. (2012). Quantitative detection of viable foodborne E. coli O157:H7, Listeria mo­nocytogenes and Salmonella in fresh-cut vegetables combining propidium monoazide and real-time PCR. Food Control, 25 (2), pp. 704-708.

Fakruddin, M, Bin Mannan, K. S. y An­drews, S. (2013). Viable but Non cul­turable Bacteria: Food Safety and Public Health Perspective. ISRN Mi­crobiology, 2013, 703813.

Fang, J., Wu, Y., Qu, D., Ma B., Yu X., Zhang, M. y Han, J. (2018). Propidium monoazi­de Real-time loop-mediated isothermal amplification for specific visualization of viable Salmonella in food. Letters in Applied Microbiology, 67 (1), pp. 79-88.

Fischer-Le Saux, M., Hervio-Heath, D., Loaec, S., Colwel, R. R. y Pommepuy, M. (2002). Detection of cytotoxin-hemolysin mRNA in nonculturable populations of envi­ronmental and clinical Vibrio vulnificus strains in artificial seawater. Applied En­vironmental Microbiology, 68 (11), pp. 5641-5646.

Fittipaldi, M., Nocker, M. A. y Codony, F. (2012). Progress in understanding pre­ferential detection of live cells using viability dyes in combination with DNA amplification. Journal Microbiology Methods, 91 (2), pp. 276-289.

Gensberger, E. T., Polt, M., Konrad-Köszler, M., Kinner, P., Sessitsch, A. y Kostic, T. (2014). Evaluation of quantitative PCR combined with PMA treatment for molecular assessment of microbial water quality. Water Research, 67, pp. 367-376.

Habimana, O., Nesse, L. L., Møretrø. T., Berg, K., Heir, E., Vestby, L. K. y Langs­rud. S. (2014). The persistence of Salmo­nella following desiccation under feed processing environmental conditions: a subject of relevance. Letters in Applied Microbiology, 59 (5), pp. 464-470.

Highmore, C. J., Warner, J. C., Rothwell, S. D., Wilks, S. A. y Keevil, C. W. (2018). Viable-but nonculturable Listeria mo­nocytogenes and Salmonella enterica serovar thompson induced by chlorine stress remain infectious. MBio, 9 (2), e00540-18.

Kana, B. D., Gordhan B. G., Downing K. J., Sung N., Vostroktunova G., Machows­ki E. E., Tsenova, L., Young, M., Ka­prelyants, A., Kaplan, G. y Mizrahi V. (2008). The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscita­tion from dormancy but are collectively dispensable for growth in vitro. Mo­lecular Microbiology, 67 (3), pp. 672- 684.

Kell, D. B., Kaprelyants, A. S., Weichart, D. H., Harwood, C. R. y Barer, M. R. (1998). Viability and activity in readily cultura­ble bacteria: a review and discussion of the practical issues. Antonie van Leeuw­enhoek, 73 (2), pp. 169-187.

Lai, C. J., Chen, S. Y., Lin, I. H., Chang, C. H. y Wong, H. C. (2009). Change of protein profiles in the induction of the viable but non culturable state of Vibrio pa­rahaemolyticus. International Journal of Food Microbiology, 135 (2), pp. 118- 124.

Li, D., Tong, T., Zeng, S., Lin, Y., Wu, S. y He, M. (2014). Quantification of via­ble bacteria in wastewater treatment plants by using propidium monoazide combined with quantitative PCR (PMA-qPCR). Journal of Environmental Scien­ces, 26 (2), pp. 299-306.

Mascher, F., Hase, C., Moenne-Loccoz, Y. y Défago, G. (2000). The viable-but-nonculturable state induced by abiotic stress in the biocontrol agent Pseu­domonas fluorescens CHA0 does not promote strain persistence in soil. Applied and Environmental Microbiolo­gy, 66 (4), pp. 1662-1667.

Makino, S. I., Kii, T., Asakura, H., Shirahata, T., Ikeda, T., Takeshi, K. y Itoh, K. (2000). Does enterohemorrhagic Escherichia coli O157:H7 enter the viable but non culturable state in salted salmon roe? Applied Environmental Microbiolo­gy, 66 (12), pp. 5536-5539.

Moyle, A. L., Harris, L. J. y Marco, M. L. (2013). Assessments of total and viable Escherichia coli O157:H7 on field and laboratory grown lettuce. PLoS One, 8 (7), e70643.

Nicolò, M. S. y Guglielmino, S. P. P. (2012). Viable but nonculturable bacteria in food. En Maddock, J. (ed.). Public Health–Methodology, Environmental and Systems Issues. Rjeka: InTech, pp. 189–216.

Nkuipou-Kenfack, E., Engel, H., Fakih, S. y Nocker, A. (2013). Improving efficiency of viability-PCR for selective detection of live cells. Journal of Microbiological Methods, 93 (1), pp. 20-24.

Nocker, A. y Camper, A. K. (2009). Novel ap­proaches toward preferential detection of viable cells using nucleic acid amplifi­cation techniques. FEMS. Microbiology Letter, 291 (2), pp. 137-142.

Nyström, T. (2003). Nonculturable bac­teria: programmed survival forms or cells at death’s door? Bioessays, 25 (3), pp. 204-211.

Oliver, J. D. (2005). The viable but noncultu­rable state in bacteria. Journal of Micro­biology, 43 (1), pp. 93-100.

Oliver, J. D. (2010). Recent findings on the viable but nonculturable state in patho­genic bacteria. FEMS Microbiology Re­views, 34 (4), pp. 415-425.

Pommepuy, M., Butin, M., Derrien, A., Gourmelon, M., Colwell, R. y Cormier, M. (1996). Retention of enteropathogenicity by viable but nonculturable Es­cherichia coli exposed to seawater and sunlight. Applied Environmental Micro­biology, 62 (12), pp. 4621-4626.

Rastogi, G., Sbodio, A., Tech, J. J., Suslow, T. V., Coaker, G. L. y Leveau J. H. (2012). Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. The ISME Journal, 6 (10), pp. 1812-1822.

Sieracki, M. E., Cucci, T. L. y Nicinski, J. (1999). Flow cytometric analysis of 5-cyano-2,3-ditolyl tetrazolium chlo­ride activity of marine bacterioplank­ton in dilution cultures. Applied Envi­ronmental Microbiology, 65 (6), pp. 2409-2417.

Signoretto, C., Lleo, M. D. M. y Canepari. P. (2002). Modification of the peptidogly­can of Escherichia coli in the viable but nonculturable state. Current Microbio­logy, 44 (2), pp. 125-131.

Tamburini, S., Foladori, P., Ferrentino, G., Spilimbergo, S. y Jousson, O. (2014). Accurate flow cytometric monitoring of Escherichia coli subpopulations on solid food treated with high pressure carbon dioxide. Journal of Applied Microbiolo­gy, 117 (2), pp. 440-450.

Tombini Decol, L., López-Gálvez, F., Trucha­do, P., Tondo, E. C., Gil, M. I. y Allende, A. (2019). Suitability of chlorine dioxi­de as a tertiary treatment for munici­pal wastewater and use of reclaimed water for overhead irrigation of baby lettuce. Food Control, 96, pp. 186- 193.

Truchado, P., Gil, M. I., Kostic, T. y Allende, A. (2016). Optimization and validation of a PMA-qPCR method for Esche­richia coli quantification in primary production. Food Control, 62, pp. 150- 156.

Van der Linden, I., Cottyn, B., Uyttendaele, M., Vlaemynck, G., Maes, M. y Heyn­drickx, M. (2014). Evaluation of an atta­chment assay on lettuce leaves with temperature and starvation stressed Es­cherichia coli O157:H7 MB3885. Journal of Food Protection, 77 (4), pp. 549-557.

Van Frankenhuyzen, J. K., Trevors, J. T., Flemming, C. A., Lee, H. y Habash, M. B. (2013). Optimization, validation, and application of a real-time PCR proto­col for quantification of viable bacte­rial cells in municipal sewage sludge and biosolids using reporter genes and Escherichia coli. Journal of Indus­trial Microbiology and Biotechnology, 40 (11), pp.1251-1261.

Wan, C., Yang, Y., Xu, H., Aguilar, Z. P., Liu, C., Lai, W., Xiong, Y., Xu, F. y Wei, H. (2012). Development of a propidium monoazi­de treatment combined with loop-me­diated isothermal amplification (PMA-LAMP) assay for rapid detection of viable Listeria monocytogenes. International Journal of Food Science and Technolo­gy. 47 (11), pp. 2460-2467.

Wang, L., Li, P., Zhang, Z., Chen, Q., Aguilar, Z. P. y Xu, H. (2014). Rapid and accura­te detection of viable Escherichia coli O157: H7 in milk using a combined IMS, sodium deoxycholate, PMA and real-time quantitative PCR process. Food Control, 36 (1), pp. 119-125.

Winkelströter, L. K. y De Martinis, E. C. P. (2015). Different methods to quan­tify Listeria monocytogenes biofilms cells showed different profile in their viability. Brazilian Journal of Microbio­logy. 46 (1), pp. 231-235.

Xu, H. S., Roberts, N., Singleton, F. L., Att­well, R. W., Grimes, D. J. y Colwell, R. R. (1982). Survival and viability of non­culturable Escherichia coli and Vibrio cholera in the estuarine and marine environment. Microbial Ecology, 8 (4), pp. 313-323.

Zhang, S., Ye, C., Lin, H., Lv, L. y Yu, X. (2015). UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeru­ginosa. Environmental Science Techno­logy, 49 (3), pp. 1721-1728.

Zhao, X., Wang, J., Forghani, F., Park J. H, Park M. S, Seo, K. H. y Oh, D. H. (2013). Rapid detection of viable Escherichia coli O157 by coupling propidium mo­noazide with loop-mediated isother­mal amplification. Journal of Microbio­logy and Biotechnology, 23 (12), pp. 1708-1716.

Zhao, X., Zhong, J., Wei, C., Lin, C. W. y Ding, T. (2017). Current perspectives on viable but non-culturable state in food­borne pathogens. Frontiers in Microbio­logy, 8, 580.

Zhou, B., Liang, T., Zhan, Z., Liu, R., Li, F. y Xu, H. (2017). Rapid and simultaneous quantification of viable Escherichia coli O157:H7 and Salmonella spp. in milk through multiplex real-time PCR. Journal of Dairy Science, 100 (11), 8804-8813.

Recursos en línea

Commission Regulation (EC) No 2073/2005 of 15 November 2005 on micro­biological criteria for foodstuffs. [En línea]. Disponible en https:// eur-lex.europa.eu/legal-content/ES/ TXT/?uri=celex:32005R2073

European Commission Notice No. 2017/C 163/01 on Guidance Document on Ad­dressing Microbiological Risks in Fresh Fruit and Vegetables at Primary Produc­tion through Good Hygiene. [En línea]. Disponible en https://eur-lex.europa. eu/legal-content/EN/TXT/?uri=CELEX% 3A52017XC0523%2803%29

FSMA Final Rule on Produce Safety. Stan­dards for the Growing, Harvesting, Pac­king, and Holding of Produce for Human Consumption. [En línea]. Disponible en https://www.fda.gov/food/food-safety-modernization-act-fsma/fsma-final-ru­le-produce-safety




Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista arbor@csic.es

Soporte técnico soporte.tecnico.revistas@csic.es